Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Diabetes Res Clin Pract ; 208: 111109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262520

RESUMO

AIM: This study aimed to examine whether cumulative exposure to hypertriglyceridemia is associated with an increased risk of developing type 2 diabetes in young adults. METHODS: The study included 1,840,251 participants aged 20-39 years who had undergonefourconsecutiveannualhealth checkups and had no history of type 2 diabetes. Participants werecategorized into five groups (exposure score 0-4) based on the frequencies of hypertriglyceridemia diagnosis over a four-year period. The primary outcome was newly diagnosed type 2 diabetes. Exploratory analyses were performed for the different subgroups. RESULTS: During a follow-up period of 6.53 years, 40,286 participants developed type 2 diabetes. The cumulative incidence of type 2 diabetes significantly increased with higher exposure scores for hypertriglyceridemia (log-rank test, P < 0.001). The multivariable-adjusted hazard ratios for incident diabetes were 1.674 (95 % CI, 1.619, 1.732), 2.192 (95 % CI, 2.117, 2.269), 2.637 (95 % CI, 2.548, 2.73), and 3.715 (95 % CI, 3.6, 3.834) for participants with scores of 1-4, respectively, compared with those with an exposure score of 0. CONCLUSIONS: In this large-scale prospective cohort study of young adults, cumulative exposure to hypertriglyceridemia was significantly associated with an increased risk of type 2 diabetes, independent of lifestyle-related factors.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertrigliceridemia , Humanos , Adulto Jovem , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , Estudos Prospectivos , Hipertrigliceridemia/complicações , Hipertrigliceridemia/epidemiologia , Incidência , Estilo de Vida , Fatores de Risco
2.
Sci Rep ; 13(1): 3855, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890290

RESUMO

Herein, we compared the association intensity of estimated glomerular filtration rate (eGFR) equations using creatinine (Cr) or cystatin C (CysC) with hyperphosphatemia and secondary hyperparathyroidism occurrence, which reflect the physiological changes occurring during chronic kidney disease (CKD) progression. This study included 639 patients treated between January 2019 and February 2022. The patients were divided into low- and high-difference groups based on the median value of the difference between the Cr-based eGFR (eGFRCr) and CysC-based eGFR (eGFRCysC). Sociodemographic and laboratory factors underlying a high difference between eGFRCr and eGFRCysC were analyzed. The association intensity of eGFRCr, eGFRCysC and both Cr- and CysC-based eGFR (eGFRCr-CysC) was compared using the area under the receiver operating characteristic curve (AuROC) values for hyperphosphatemia and hyperparathyroidism occurrence in the overall cohort and the low- and high-difference groups. Age > 70 years and CKD grade 3 based on eGFRCr were significant factors affecting the high differences. eGFRCysC and eGFRCr-CysC showed higher AuROC values than that of eGFRCr, especially in the high-difference group and in patients with CKD grade 3. Our results show that CysC should be evaluated in patients with significant factors, including age > 70 years and CKD grade 3, to accurately assess kidney function to better determine the physiological changes in CKD progression and predict prognosis accurately.


Assuntos
Hiperparatireoidismo Secundário , Hiperfosfatemia , Insuficiência Renal Crônica , Humanos , Idoso , Cistatina C , Creatinina , Hiperfosfatemia/complicações , Taxa de Filtração Glomerular/fisiologia , Hiperparatireoidismo Secundário/complicações
3.
Mar Drugs ; 20(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35447940

RESUMO

Astaxanthin is a powerful biological antioxidant and is naturally generated in a great variety of living organisms. Some studies have demonstrated the neuroprotective effects of ATX against ischemic brain injury in experimental animals. However, it is still unknown whether astaxanthin displays neuroprotective effects against severe ischemic brain injury induced by longer (severe) transient ischemia in the forebrain. The purpose of this study was to evaluate the neuroprotective effects of astaxanthin and its antioxidant activity in the hippocampus of gerbils subjected to 15-min transient forebrain ischemia, which led to the massive loss (death) of pyramidal cells located in hippocampal cornu Ammonis 1-3 (CA1-3) subfields. Astaxanthin (100 mg/kg) was administered once daily for three days before the induction of transient ischemia. Treatment with astaxanthin significantly attenuated the ischemia-induced loss of pyramidal cells in CA1-3. In addition, treatment with astaxanthin significantly reduced ischemia-induced oxidative DNA damage and lipid peroxidation in CA1-3 pyramidal cells. Moreover, the expression of the antioxidant enzymes superoxide dismutase (SOD1 and SOD2) in CA1-3 pyramidal cells were gradually and significantly reduced after ischemia. However, in astaxanthin-treated gerbils, the expression of SOD1 and SOD2 was significantly high compared to in-vehicle-treated gerbils before and after ischemia induction. Collectively, these findings indicate that pretreatment with astaxanthin could attenuate severe ischemic brain injury induced by 15-min transient forebrain ischemia, which may be closely associated with the decrease in oxidative stress due to astaxanthin pretreatment.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Gerbillinae/genética , Gerbillinae/metabolismo , Hipocampo , Isquemia/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase-1/metabolismo , Xantofilas
4.
Mol Med Rep ; 25(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35088884

RESUMO

Korean maritime pine bark (Pinus thunbergii) has been used as an alternative medicine due to its beneficial properties, including anti­inflammatory effects. To date, the anti­inflammatory and hair growth­promoting effects of Pinus densiflora bark extract have remained elusive. Therefore, in the present study, Pinus thunbergii bark was extracted with pure water (100˚C) and the extract was examined to determine its polyphenol and flavonoid content. C57BL/6 mice were used to assess the effects of the extract to promote hair growth. The extract (1, 2 and 4%) was topically applied onto shaved dorsal skin and hair growth was observed for 17 days. A significant increase in hair growth was observed with 2 and 4% extract. Based on this finding, the optimal dose of the extract for effective hair growth promotion was determined to be 2%. The mechanisms of hair growth promotion were investigated via immunohistochemical analysis of changes in inflammatory cytokines and growth factors in the hair follicles following treatment with 2% extract. The treatment reduced the levels of TNF­α and IL­1ß, which are pro­inflammatory cytokines, while it enhanced the levels of IL­4 and IL­13, which are anti­inflammatory cytokines, in the hair follicles. In addition, elevated insulin­like growth factor I and vascular epidermal growth factor were detected in hair follicles following treatment. Based on these findings, it was suggested that the extract of Pinus thunbergii bark may be utilized for hair loss prevention and/or hair growth promotion.


Assuntos
Pinus , Animais , Citocinas/análise , Flavonoides/análise , Flavonoides/farmacologia , Folículo Piloso , Camundongos , Camundongos Endogâmicos C57BL , Pinus/química , Casca de Planta/química , Extratos Vegetais/química
5.
Front Biosci (Landmark Ed) ; 27(12): 337, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36624955

RESUMO

BACKGROUND: Ischemia and reperfusion injury in the brain triggers cognitive impairment which are accompanied by neuronal death, loss of myelin sheath and decline in neurotransmission. In this study, we investigated whether therapeutic administration of Brain Factor-7® (BF-7®; a silk peptide) in ischemic gerbils which were developed by transient (five minutes) ischemia and reperfusion in the forebrain (tFI/R) improved cognitive impairment. METHODS: Short-term memory and spatial memory functions were assessed by passive avoidance test and Barnes maze test, respectively. To examine neuronal change in the hippocampus, cresyl violet staining, immunohistochemistry for neuronal nuclei and fluoro Jade B histofluorescence were performed. We carried out immunohistochemistry for myelin basic protein (a marker for myelin) and receptor interacting protein (a marker for oligodendrocytes). Furthermore, immunohistochemistry for vesicular acetylcholine transporter (as a cholinergic transporter) and vesicular glutamate transporter 1 (as a glutamatergic synapse) was done. RESULTS: Administration of BF-7® significantly improved tFI/R-induced cognitive impairment. tFI/R-induced neuronal death was found in the Cornu Ammonis 1 (CA1) subfield of the hippocampus from five days after tFI/R. Treatment with BF-7® following tFI/R did not restore the death (loss) of CA1 neurons following tFI/R. However, BF-7® treatment to the ischemic gerbils significantly improved remyelination and proliferation of oligodendrocytes in the hippocampus with ischemic injury. Treatment with BF-7® to the ischemic gerbils significantly restored vesicular acetylcholine transporter-immunoreactive and vesicular glutamate transporter 1-immunoreactive structures in the hippocampus with ischemic injury. CONCLUSIONS: Based on these results, we suggest that BF-7® can be utilized for improving cognitive impairments induced by ischemic injury as an additive for health/functional foods and/or medicines.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Ataque Isquêmico Transitório , Remielinização , Traumatismo por Reperfusão , Animais , Gerbillinae/metabolismo , Ataque Isquêmico Transitório/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/análise , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/análise , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Hipocampo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transmissão Sináptica , Isquemia/metabolismo , Prosencéfalo/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Colinérgicos/análise , Colinérgicos/metabolismo , Isquemia Encefálica/metabolismo
6.
Molecules ; 26(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576901

RESUMO

Transient ischemia in brains causes neuronal damage, gliosis, and blood-brain barrier (BBB) breakdown, which is related to ischemia-induced brain dysfunction. Populus species have various pharmacological properties including antioxidant and anti-inflammatory activities. In this study, we found that phenolic compounds were rich in Populus tomentiglandulosa extract and examined the effects of Populus tomentiglandulosa extract on neuronal damage/death, astrogliosis, and BBB breakdown in the striatum, which is related to motor behavior, following 15-min transient ischemia in the forebrain in gerbils. The gerbils were pre-treated with 50, 100, and 200 mg/kg of the extract. The latter showed significant effects against ischemia-reperfusion injury. Ischemia-induced hyperactivity using spontaneous motor activity test was significantly attenuated by the treatment. Striatal cells (neurons) were dead at five days after the ischemia; however, pre-treatment with the extract protected the striatal cells from ischemia/reperfusion injury. Ischemia-induced reactive astrogliosis was significantly alleviated, in particular, astrocyte end feet, which are a component of BBB, were significantly preserved. Immunoglobulin G, which is not found in intact brain parenchyma, was apparently shown (an indicator of extravasation) in striatal parenchyma at five days after the ischemia, but IgG leakage was dramatically attenuated in the parenchyma by the pre-treatment. Based on these findings, we suggest that Populus tomentiglandulosa extract rich in phenolic compounds can be employed as a pharmaceutical composition to develop a preventive material against brain ischemic injury.


Assuntos
Astrócitos , Barreira Hematoencefálica , Gerbillinae , Polifenóis , Populus , Animais , Morte Celular/efeitos dos fármacos , Hipocampo/metabolismo , Neurônios/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico
7.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361744

RESUMO

Korean red pine (Pinus densiflora) belongs to the Genus Pinus, and its bark contains a great amount of naturally occurring phenolic compounds. Until now, few studies have been conducted to assess the neuroprotective effects of Pinus densiflora bark extract against brain ischemic injury. The aim of this study was to investigate the neuroprotective effects of pre-treatment with the extract in the hippocampus following 5-min transient forebrain ischemia in gerbils. Furthermore, this study examined the anti-inflammatory effect as a neuroprotective mechanism of the extract. Pinus densiflora bark was extracted by pure water (100 °C), and this extract was quantitatively analyzed and contained abundant polyphenols, flavonoids, and proanthocyanidins. The extract (25, 50, and 100 mg/kg) was orally administered once a day for seven days before the ischemia. In the gerbil hippocampus, death of the pyramidal neurons was found in the subfield cornu ammonis 1 (CA1) five days after the ischemia. This death was significantly attenuated by pre-treatment with 100 mg/kg, not 25 or 50 mg/kg, of the extract. The treatment with 100 mg/kg of the extract markedly inhibited the activation of microglia (microgliosis) and significantly decreased the expression of pro-inflammatory cytokines (interleukin 1ß and tumor necrosis factor α). In addition, the treatment significantly increased anti-inflammatory cytokines (interleukin 4 and interleukin 13). Taken together, this study clearly indicates that pre-treatment with 100 mg/kg of Pinus densiflora bark extract in gerbils can exert neuroprotection against brain ischemic injury by the attenuation of neuroinflammatory responses.


Assuntos
Anti-Inflamatórios/farmacologia , Isquemia Encefálica/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pinus/química , Prosencéfalo/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Flavonoides/química , Flavonoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação , Interleucina-13/agonistas , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-4/agonistas , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fármacos Neuroprotetores/química , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Proantocianidinas/química , Proantocianidinas/farmacologia , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Antioxidants (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924188

RESUMO

Salicin is a major natural compound of willow bark and displays diverse beneficial biological properties, such as antioxidant activity. However, little information available for the neuroprotective potential of salicin against ischemic brain injury has been reported. Thus, this study was performed to investigate the neuroprotective potential of salicin against ischemia and reperfusion (IR) injury and its mechanisms in the hippocampus using a gerbil model of 5-min transient ischemia (TI) in the forebrain, in which a massive loss (death) of pyramidal neurons cells occurred in the subfield Cornu Ammonis 1 (CA1) among the hippocampal subregions (CA1-3) at 5 days after TI. To examine neuroprotection by salicin, gerbils were pretreated with salicin alone or together with LY294002, which is a phosphatidylinositol 3-kinase (PI3K) inhibitor, once daily for 3 days before TI. Treatment with 20 mg/kg of salicin significantly protected CA1 pyramidal neurons against the ischemic injury. Treatment with 20 mg/kg of salicin significantly reduced the TI-induced increase in superoxide anion generation and lipid peroxidation in the CA1 pyramidal neurons after TI. The treatment also reinstated the TI-induced decrease in superoxide dismutases (SOD1 and SOD2), catalase, and glutathione peroxidase in the CA1 pyramidal cells after TI. Moreover, salicin treatment significantly elevated the levels of phosphorylation of Akt and glycogen synthase kinase-3ß (GSK3ß), which is a major downstream target of PI3K, in the ischemic CA1. Notably, the neuroprotective effect of salicin was abolished by LY294002. Taken together, these findings clearly indicate that salicin protects against ischemic brain injury by attenuating oxidative stress and activating the PI3K/Akt/GSK3ß pathway.

9.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918660

RESUMO

Angelica gigas Nakai root contains decursin which exerts beneficial properties such as anti-amnesic and anti-inflammatory activities. Until now, however, the neuroprotective effects of decursin against transient ischemic injury in the forebrain have been insufficiently investigated. Here, we revealed that post-treatment with decursin and the root extract saved pyramidal neurons in the hippocampus following transient ischemia for 5 min in gerbil forebrain. Through high-performance liquid chromatography, we defined that decursin was contained in the extract as 7.3 ± 0.2%. Based on this, we post-treated with 350 mg/kg of extract, which is the corresponding dosage of 25 mg/kg of decursin that exerted neuroprotection in gerbil hippocampus against the ischemia. In addition, behavioral tests were conducted to evaluate ischemia-induced dysfunctions via tests of spatial memory (by the 8-arm radial maze test) and learning memory (by the passive avoidance test), and post-treatment with the extract and decursin attenuated ischemia-induced memory impairments. Furthermore, we carried out histochemistry, immunohistochemistry, and double immunohistofluorescence. Pyramidal neurons located in the subfield cornu ammonis 1 (CA1) among the hippocampal subfields were dead at 5 days after the ischemia; however, treatment with the extract and decursin saved the pyramidal neurons after ischemia. Immunoglobulin G (IgG, an indicator of extravasation), which is not found in the parenchyma in normal brain tissue, was apparently shown in CA1 parenchyma from 2 days after the ischemia, but IgG leakage was dramatically attenuated in the CA1 parenchyma treated with the extract and decursin. Furthermore, astrocyte endfeet, which are a component of the blood-brain barrier (BBB), were severely damaged at 5 days after the ischemia; however, post-treatment with the extract and decursin dramatically attenuated the damage of the endfeet. In brief, therapeutic treatment of the extract of Angelica gigas Nakai root and decursin after 5 min transient forebrain ischemia protected hippocampal neurons from the ischemia, showing that ischemia-induced BBB leakage and damage of astrocyte endfeet was significantly attenuated by the extract and decursin. Based on these findings, we suggest that Angelica gigas Nakai root containing decursin can be employed as a pharmaceutical composition to develop a therapeutic strategy for brain ischemic injury.


Assuntos
Angelica/química , Astrócitos/patologia , Benzopiranos/uso terapêutico , Barreira Hematoencefálica/patologia , Butiratos/uso terapêutico , Ataque Isquêmico Transitório/patologia , Extratos Vegetais/uso terapêutico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Benzopiranos/química , Benzopiranos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Butiratos/química , Butiratos/farmacologia , Gerbillinae , Proteína Glial Fibrilar Ácida/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Imunoglobulina G/metabolismo , Masculino , Neuraminidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Padrões de Referência , Memória Espacial/efeitos dos fármacos
10.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921375

RESUMO

It has been studied that the damage or death of neurons in the hippocampus is different according to hippocampal subregions, cornu ammonis 1-3 (CA1-3), after transient ischemia in the forebrain, showing that pyramidal neurons located in the subfield CA1 (CA1) are most vulnerable to this ischemia. Hyperthermia is a proven risk factor for brain ischemia and can develop more severe and extensive brain damage related with mortality rate. It is well known that heme oxygenase-1 (HO-1) activity and expression is increased by various stimuli in the brain, including hyperthermia. HO-1 can be either protective or deleterious in the central nervous system, and its roles depend on the expression levels of enzymes. In this study, we investigated the effects of hyperthermia during ischemia on HO-1 expression and neuronal damage/death in the hippocampus to examine the relationship between HO-1 and neuronal damage/death following 5-min transient ischemia in the forebrain using gerbils. Gerbils were assigned to four groups: (1) sham-operated gerbils with normothermia (Normo + sham group); (2) ischemia-operated gerbils with normothermia (Normo + ischemia group); (3) sham-operated gerbils with hyperthermia (39.5 ± 0.2 °C) during ischemia (Hyper + sham group); and (4) ischemia-operated gerbils with hyperthermia during ischemia (Hyper + ischemia group). HO-1 expression levels in CA1-3 of the Hyper + ischemia group were significantly higher than those in the Normo + ischemia group. HO-1 immunoreactivity in the Hyper + ischemia group was significantly increased in pyramidal neurons and astrocytes with time after ischemia, and the immunoreactivity was significantly higher than that in the Normo + ischemia group. In the Normo + Ischemia group, neuronal death was shown in pyramidal neurons located only in CA1 at 5 days after ischemia. However, in the Hyper + ischemia group, pyramidal neuronal death occurred in CA1-3 at 2 days after ischemia. Taken together, our findings showed that brain ischemic insult during hyperthermic condition brings up earlier and severer neuronal damage/death in the hippocampus, showing that HO-1 expression in neurons and astrocytes is different according to brain subregions and temperature condition. Based on these findings, we suggest that hyperthermia in patients with ischemic stroke must be taken into the consideration in the therapy.


Assuntos
Lesões Encefálicas/genética , Heme Oxigenase-1/genética , Hipocampo/metabolismo , Traumatismo por Reperfusão/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Gerbillinae/genética , Gerbillinae/metabolismo , Hipocampo/lesões , Hipocampo/fisiopatologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Traumatismo por Reperfusão/patologia
12.
Exp Ther Med ; 21(3): 183, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33488792

RESUMO

Erigeron annuus (L.) PERS. (EALP) and Clematis mandshurica RUPR. (CMR) have been used in traditional remedies due to their medicinal effects. Recently, we reported that pretreatment with 200 mg/kg of YES-10® (a combination of extracts from leaves of EALP and CMR) displayed neuroprotective effects against brain ischemia and reperfusion injury. The present study analyzed the major ingredients of YES-10® and investigated whether neuroprotection from YES-10® was dependent upon antioxidant effects in the cornu ammonis 1 (CA1) field in the gerbil hippocampus, after transient forebrain ischemia for 5 min. YES-10® was demonstrated to predominantly contain scutellarin and chlorogenic acid. Pretreatment with YES-10® significantly increased protein levels and the immunoreactivity of copper/zinc-superoxide dismutase (SOD1) and manganese-superoxide dismutase (SOD2) was in the pyramidal neurons of the hippocampal CA1 field when these were examined prior to transient ischemia induction. The increased SODs in CA1 pyramidal neurons following YES-10® treatment were maintained after ischemic injury. In this case, the CA1 pyramidal neurons were protected from ischemia-reperfusion injury. Oxidative stress was significantly attenuated in the CA1 pyramidal neurons, and this was determined by 4-hydroxy-2-nonenal immunohistochemistry and dihydroethidium histofluorescence staining. Taken together, the results indicated that YES-10® significantly attenuated transient ischemia-induced oxidative stress and may be utilized for developing a protective agent against ischemic insults.

13.
Molecules ; 25(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036412

RESUMO

Aronia melanocarpa, a black chokeberry, contains high levels of phenolic acids and polyphenolic flavonoids and displays antioxidative and anti-inflammatory effects. Through high-performance liquid chromatography for extracts from Aronia melanocarpa, we discovered that the extract contained chlorogenic acid and rutin as major ingredients. In this study, we examined the protective effects of the extract against ultraviolet B- (UVB)-induced photodamage in the dorsal skin of institute of cancer research (ICR) mice. Their dorsal skin was exposed to UVB, thereafter; the extract was topically applied once a day for seven days. Photoprotective properties of the extract in the dorsal skin were investigated by clinical skin severity score for skin injury, hematoxylin and eosin staining for histopathology, Masson's trichrome staining for collagens. In addition, we examined change in collagen type I and III, and matrix metalloproteinase (MMP)-1 and MMP-3 by immunohistochemistry. In the UVB-exposed mice treated with the extract, UVB-induced epidermal damage was significantly ameliorated, showing that epidermal thickness was moderated. In these mice, immunoreactivities of collagen type I and III were significantly increased, whereas immunoreactivities of MMP-1 and 3 were significantly decreased compared with those in the UVB-exposed mice. These results indicate that treatment with Aronia melanocarpa extract attenuates UV-induced photodamage by attenuating UVB-induced collagen disruption: these findings might be a result of the chlorogenic acid and rutin contained in the extract. Based on the current results, we suggest that Aronia melanocarpa can be a useful material for developing photoprotective adjuvant.


Assuntos
Ácido Clorogênico/química , Colágeno/metabolismo , Photinia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Rutina/química , Raios Ultravioleta/efeitos adversos , Administração Tópica , Animais , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação
14.
J Obes Metab Syndr ; 29(3): 215-221, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32990259

RESUMO

BACKGROUND: Sodium-glucose cotransporter 2 inhibitors reduce the risk of cardiovascular death in individuals with type 2 diabetes mellitus (T2DM) and cardiovascular disease, but the effect of these inhibitors on early cardiovascular disease remains unknown. This study evaluated the effect of dapagliflozin on the metabolic profiles and endothelial cell function in obese patients with T2DM without established cardiovascular disease. METHODS: We enrolled 140 patients with a mean age, weight, and body mass index (BMI) of 47 years, 83 kg, and 30.3 kg/m2, respectively. Dapagliflozin (10 mg daily for 6 months) was administered to obese patients with T2DM without established cardiovascular disease. Participants' weight, BMI, body fat mass (BFM), muscle mass, glycosylated hemoglobin (HbA1c), lipid profile, waist to hip ratio (WHR), and pulse wave velocity (PWV) were measured at baseline and after 6 months. RESULTS: Participants experienced statistically significant reductions in their HbA1c, fasting plasma glucose, low-density lipoprotein cholesterol, total cholesterol, body weight, BMI, WHR, BFM, and aortic PWV, without a significant change in their muscle mass, extracellular fluid, or intracellular volume. Statistically significant reductions in aortic PWV were associated with a decrease in BFM, visceral fat, WHR, and homeostatic model assessment of insulin resistance. CONCLUSION: Dapagliflozin may be beneficial in preventing early cardiovascular disease in obese patients with T2DM without established cardiovascular disease.

15.
Endocrinol Metab (Seoul) ; 35(3): 610-617, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32981303

RESUMO

BACKGROUND: It is well known that high serum ferritin, a marker of iron storage, predicts incident type 2 diabetes. Limited information is available on the association between transferrin, another marker of iron metabolism, and type 2 diabetes. Thus, we investigated the association between transferrin and incident type 2 diabetes. METHODS: Total 31,717 participants (mean age, 40.4±7.2 years) in a health screening program in 2005 were assessed via cross-sectional analysis. We included 30,699 subjects who underwent medical check-up in 2005 and 2009 and did not have type 2 diabetes at baseline in this retrospective longitudinal analysis. RESULTS: The serum transferrin level was higher in the type 2 diabetes group than in the non-type 2 diabetes group (58.32±7.74 µmol/L vs. 56.17±7.96 µmol/L, P<0.001). Transferrin correlated with fasting serum glucose and glycosylated hemoglobin in the correlational analysis (r=0.062, P<0.001 and r=0.077, P<0.001, respectively) after full adjustment for covariates. Transferrin was more closely related to homeostasis model assessment of insulin resistance than to homeostasis model assessment of ß cell function (r=0.042, P<0.001 and r=-0.019, P=0.004, respectively) after full adjustment. Transferrin predicted incident type 2 diabetes in non-type 2 diabetic subjects in a multivariate linear regression analysis; the odds ratio (95% confidence interval [CI]) of the 3rd tertile compared to that in the 1st tertile of transferrin for incident diabetes was 1.319 (95% CI, 1.082 to 1.607) after full adjustment (P=0.006). CONCLUSION: Transferrin is positively associated with incident type 2 diabetes in Koreans.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Hemoglobinas Glicadas/metabolismo , Transferrina/metabolismo , Adulto , Biomarcadores/sangue , Estudos Transversais , Jejum , Feminino , Humanos , Resistência à Insulina , Modelos Lineares , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Análise Multivariada , República da Coreia , Estudos Retrospectivos
16.
Nutrients ; 12(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824513

RESUMO

Pycnogenol® (an extract of the bark of French maritime pine tree) is used for dietary supplement and known to have excellent antioxidative efficacy. However, there are few reports on neuroprotective effect of Pycnogenol® supplementation and its mechanisms against ischemic injury following transient forebrain ischemia (TFI) in gerbils. Now, we examined neuroprotective effect and its mechanisms of Pycnogenol® in the gerbils with 5-min TFI, which evokes a significant death (loss) of pyramidal cells located in the cornu ammonis (CA1) region of gerbil hippocampus from 4-5 days post-TFI. Gerbils were pretreated with 30, 40, and 50 mg/kg of Pycnogenol® once a day for 7 days before TFI surgery. Treatment with 50 mg/kg, not 30 or 40 mg/kg, of Pycnogenol® potently protected learning and memory, as well as CA1 pyramidal cells, from ischemic injury. Treatment with 50 mg/kg Pycnogenol® significantly enhanced immunoreactivity of antioxidant enzymes (superoxide dismutases and catalase) in the pyramidal cells before and after TFI induction. Furthermore, the treatment significantly reduced the generation of superoxide anion, ribonucleic acid oxidation and lipid peroxidation in the pyramidal cells. Moreover, interestingly, its neuroprotective effect was abolished by administration of sodium azide (a potent inhibitor of SODs and catalase activities). Taken together, current results clearly indicate that Pycnogenol® supplementation can prevent neurons from ischemic stroke through its potent antioxidative role.


Assuntos
Antioxidantes , Região CA1 Hipocampal/citologia , Suplementos Nutricionais , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/patologia , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Animais , Catalase/metabolismo , Modelos Animais de Doenças , Gerbillinae , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Células Piramidais/enzimologia , Superóxido Dismutase/metabolismo
17.
Plants (Basel) ; 9(2)2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991860

RESUMO

: Clematis mandshurica RUPR. (CMR) and Erigeron annuus (L.) PERS. (EALP) have pharmacological effects including anti-inflammatory activity and been used in traditional medicines in Asia. However, neuroprotective effects of CMR and/or EALP extracts against brain ischemic insults have never been addressed. Thus, the aim of this study was to examine neuroprotective effects of YES-10, a combination of extracts from CMR and EALP (combination ratio, 1:1), in the hippocampus following ischemia/reperfusion in gerbils. Protection of neurons was investigated by cresyl violet staining, fluoro-jade B histofluorescence staining and immunohistochemistry for neuronal nuclei. In addition, attenuation of gliosis was studied by immunohistochemistry for astrocytic and microglial markers. Treatments with 50 or 100 mg/kg YES-10 failed to protect neurons in the hippocampus after ischemia/reperfusion injury. However, administration of 200 mg/kg YES-10 protected neurons from ischemia/reperfusion injury and attenuated reactive gliosis. These findings strongly suggest that a combination of extracts from CMR and EALP can be used as a prevention approach/drug against brain ischemic damage.

18.
Iran J Basic Med Sci ; 22(8): 963-967, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31579454

RESUMO

OBJECTIVES: Populus species have various pharmacological properties, including antioxidant activity. In this study, the effects of Populus tomentiglandulosa extract (PTE) on histopathology and antioxidant enzymes in the rat liver and kidney were examined. MATERIALS AND METHODS: Sprague-Dawley rats were assigned to three groups; (1) normal diet fed group, (2) ascorbic acid-containing diet-fed group as a positive control, (3) PTE-containing diet-fed group. The histopathology in the rat liver and kidney was examined by hematoxylin and eosin staining. The effect of PTE was examined in the rat liver and kidney by immunohistochemistry for antioxidant enzymes, such as superoxide dismutases (SOD1 and SOD2), catalase (CAT), and glutathione peroxidase (GPx). RESULTS: No marked histopathological alterations were observed in the liver and kidney of the PTE-containing diet-fed group. In the liver, the mean numbers of SOD1, SOD2, CAT, and GPx immunoreactive cells were significantly increased in the PTE-containing diet-fed rats, compared with those in the normal- and ascorbic acid-containing diet-fed rats. In the kidney, all SOD1, SOD2, CAT, and GPx immunoreactive structures were significantly increased in the PTE-containing diet-fed group, compared with those in the normal- and ascorbic acid-containing diet-fed groups. CONCLUSION: Results showed that PTE treatment significantly increased antioxidant enzymes in the rat liver and kidney, and we suggest that PTE might have hepato- and nephro-protective potentials against oxidative stress.

19.
Chin J Nat Med ; 17(6): 424-434, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31262455

RESUMO

To examine the effects of Populus tomentiglandulosa (PT) extract on the expressions of antioxidant enzymes and neurotrophic factors in the cornu ammonis 1 (CA1) region of the hippocampus at 5 min after inducing transient global cerebral ischemia (TGCI) in gerbils, TGCI was induced by occlusion of common carotid arteries for 5 min. Before ischemic surgery, 200 mg·kg-1 PT extract was orally administrated once daily for 7 d. We performed neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B staining. Furthermore, we determined in situ production of superoxide anion radical, expression levels of SOD1 and SOD2 as antioxidant enzymes and brain-derived neurotrophic factor (BDNF) and insulin-like growth factor I (IGF-I) as neurotrophic factors. Pretreatment with 200 mg·kg-1 PT extract prevented neuronal death (loss). Furthermore, pretreatment with 200 mg·kg-1 PT extract significantly inhibited the production of superoxide anion radical, increased expressions of SODs and maintained expressions of BDNF and IGF-I. Such increased expressions of SODs were maintained in the neurons after IRI. In summary, pretreated PT extract can significantly increase levels of SODs and protect the neurons against TGCI, suggesting that PT can be a useful natural agent to protect against TGCI.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Extratos Vegetais/administração & dosagem , Populus/química , Células Piramidais/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Superóxido Dismutase/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Região CA1 Hipocampal/metabolismo , Gerbillinae , Humanos , Fator de Crescimento Insulin-Like I/genética , Masculino , Fármacos Neuroprotetores/administração & dosagem , Células Piramidais/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase/genética , Regulação para Cima/efeitos dos fármacos
20.
Neural Regen Res ; 14(9): 1536-1543, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31089052

RESUMO

Recently, we have reported that Oenanthe javanica extract (OJE) displays strong neuroprotective effect against ischemic damage after transient global cerebral ischemia. However, neuroprotective mechanisms of OJE have not been fully identified. Thus, this study investigated the neuroprotection of OJE in the hippocampal CA1 area and its anti-inflammatory activity in gerbils subjected to 5 minutes of transient global cerebral ischemia. We treated the animals by intragastrical injection of OJE (100 and 200 mg/kg) once daily for 1 week prior to transient global cerebral ischemia. Neuroprotection of OJE was observed by immunohistochemistry for neuronal nuclear antigen and histofluorescence staining for Fluoro-Jade B. Immunohistochemistry of glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 was done for astrocytosis and microgliosis, respectively. To investigate the neuroprotective mechanisms of OJE, we performed immunohistochemistry of tumor necrosis factor-alpha and interleukin-2 for pro-inflammatory function and interleukin-4 and interleukin-13 for anti-inflammatory function. When we treated the animals by intragastrical administration of 200 mg/kg of OJE, hippocampal CA1 pyramidal neurons were protected from transient global cerebral ischemia and cerebral ischemia-induced gliosis was inhibited in the ischemic hippocampal CA1 area. We also found that interleukin-4 and -13 immunoreactivities were significantly increased in pyramidal neurons of the ischemic CA1 area after OJE pretreatment, and the increased immunoreactivities were sustained in the CA1 pyramidal neurons after transient global cerebral ischemia. However, OJE pretreatment did not increase interleukin-2 and tumor necrosis factor-alpha immunoreactivities in the CA1 pyramidal neurons. Our findings suggest that pretreatment with OJE can protect neurons and attenuate gliosis from transient global cerebral ischemia via increasing expressions of interleukin-4 and -13. The experimental plan of this study was reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) in Kangwon National University (approval No. KW-160802-1) on August 10, 2016.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA