RESUMO
OBJECTIVE: To identify vulnerable areas and populations with limited access to dental care in Virginia, the study aimed (1) to calculate travel time and accessibility scores to dental care in Virginia using a transit-based accessibility model for all dental clinics and dental clinics participating in the Medicaid dental program and (2) to estimate factors associated with accessibility to dental clinics participating in the Medicaid dental program in Virginia. METHODS: The study used building footprints as origins of transit trips to dental care services (or destinations). The study then computed transit-based origin-destination travel time matrices based on the detailed trip information, including in-vehicle and out-of-vehicle travel time. Accessibility scores were calculated by counting the number of dental clinics that can be reached within 60 min. Regression analysis was used to measure factors associated with accessibility scores to dental clinics participating in Medicaid. RESULTS: Residents in smaller regions spent longer travel time to dental clinics by public transit compared with those who resided in larger regions. Medicaid participants also faced longer travel time compared with the general population. Residents spent more than three-fourths of the time waiting for public transit and walking to clinics regardless of where they live and what type of insurance they have. Associations between sociodemographic factors and accessibility scores to dental clinics participating in the Medicaid dental program varied across regions. CONCLUSIONS: Disparities in dental care accessibility exist depending on the size of regions and Medicaid participation in Virginia. The disparities in transit-based access to dental clinics and a disproportionate amount of time spent waiting for public transit and walking to dental clinics could be improved through tailored interventions taking into account the sociodemographic and geographic characteristics of each region.
RESUMO
Significant challenges in ensuring long-term stability, addressing environmental safety issues, and improving efficiency have hindered the commercialization of inverted Pb-based halide perovskite solar cells (PeSCs). One reasonable approach to addressing these issues is to place an effective buffer layer between the perovskite active layer and the electrode. In this study, we demonstrate the use of crown ether, di-tert-butyl dibenzo-18-crown-6, as a single buffer layer to improve the efficiency, long-term stability, and environmental safety of PeSCs for the first time. The crown ether buffer layer suppressed Ag diffusion from the Ag metal electrodes, thereby improving the performance and lifetime of the device. In addition, it effectively captures Pb ions that may leak into the environment during the whole lifetime of devices, thereby enhancing the environmental safety of PeSCs. Furthermore, PeSCs incorporating crown ethers as buffer layers demonstrated enhanced stability in a nitrogen atmosphere and achieved a high power conversion efficiency of 22.8%. Consequently, this crown ether buffer layer offers an effective and straightforward strategy capable of achieving efficient, stable, and environmentally safe PeSCs.
RESUMO
BACKGROUND: Atrial functional mitral regurgitation (AFMR), defined by normal left ventricular function, enlarged left atrium, and a dilated mitral valve annulus, has been a concept discussed for >10 years. However, there are still no established guidelines for its treatment in the American College of Cardiology/American Heart Association recommendations. This study aimed to determine the long-term outcomes of mitral annuloplasty as a treatment for AFMR. METHODS: We analyzed 1435 patients who underwent mitral valve repair at our institution between 2005 and 2020, with 162 classified as having AFMR. Exclusion criteria for AFMR were established based on preoperative echocardiography and operative notes. The primary outcome was overall mortality, and the secondary outcome was MR recurrence, which was defined as moderate or greater mitral regurgitation observed on echocardiography during the follow-up period, analyzed using our hospital's medical records and data from the National Statistical Office. RESULTS: The median follow-up duration for the entire patient cohort was 6.1 years (interquartile range, 3.2-11.2 years). Patients had a 5-year survival rate of 86% and a 10-year survival rate of 73%, with freedom from MR recurrence rates of 89% and 80% at 5 and 10 years, respectively. Although all 162 patients had moderate or greater MR before surgery, most experienced trivial or mild MR after mitral valve repair throughout the follow-up period. CONCLUSIONS: In summary, mitral valve repair effectively treats patients with AFMR, addressing survival and mitigating MR recurrence.
RESUMO
Mangifera indica L., a member of the Anacardiaceae family, is widely cultivated across the globe. The leaves of M. indica are renowned for their medicinal properties, attributed to the abundance of bioactive compounds. This study investigated the effects of mango leaf extract on oxidative stress in HeLa cells. Notably, the n-hexane fraction (MLHx) significantly enhanced antioxidant response element (ARE)-luciferase activity at a concentration of 100 µg/mL, surpassing other fractions. MLHx also promoted the expression of HO-1 mRNA by increasing nuclear NRF2 levels. The molecular mechanism of MLHx involves increased phosphorylation of ERK1/2 and stabilization of NRF2. Bioactivity-guided isolation resulted in the identification of six oxylipins: 13(R)-hydroxy-octadeca-(9Z,11E,15Z)-trienoic acid (C-1), 9(R)-hydroxy-octadeca-(10E,12Z,15Z)-trienoic acid (C-2), 13(R)-hydroxy-(9Z,11E)-octadecadienoic acid (C-3), 9(R)-hydroxy-(10E,12Z)-octadecadienoic acid (C-4), 9-oxo-(10E,12E)-octadecadienoic acid (C-5), and 9-oxo-(10E,12Z)-octadecadienoic acid (C-6). These structures were elucidated using comprehensive spectroscopic techniques, including MS and 1H NMR. Additionally, compounds C-7 (9-oxo-(10E,12Z,15Z)-octadecatrienoic acid) and 8 (13-oxo-(9E,11E)-octadecadienoic acid) were characterized by LC-MS/MS mass fragmentation. This study reports the isolation of compounds 1-6 from M. indica for the first time. When tested for their effect on NRF2 activity in HeLa cells, compounds 3, 5, and 6 showed strong stimulation of ARE-luciferase activity in a dose-dependent manner.
RESUMO
Polymer coatings are widely used in industries for protection, decoration, and specific applications, typically including volatile organic compounds (VOCs) to achieve low viscosity. The growing environmental concerns and the anticipated limits on fossil feedstock have driven the coating industry towards eco-friendly alternatives, with UV-curing technology emerging as a promising solution due to its energy efficiency, low-temperature operation, reduced VOC emissions, and high curing speed. Polyurethane acrylates (PUAs) are critical in UV-curable formulations, offering excellent flexibility, impact strength, optical, and adhesion properties. However, UV-cured PUA coatings face limitations in thermal stability and tensile strength, which can be addressed by incorporating fillers. This study investigates the effects of multi-functionalized hexagonal boron nitride (hBN) nanoparticles on the mechanical, thermal, optical, and adhesion properties of UV-cured PUA films and coatings for pre-coated metals. The results demonstrated that incorporating hBN nanoparticles enhanced the mechanical and thermal properties of the nanocomposite films, with optimal performance observed at 0.5% hBN loading. Despite the improved properties, the FTIR spectra indicated that the low concentration of hBN did not produce significant changes, potentially due to the overshadowing signals from the difunctional polyurethane acrylate.
RESUMO
Two-dimensional (2D) materials have shown outstanding potential for new devices based on their interesting electrical properties beyond conventional 3D materials. In recent years, new concepts such as the valley degree of freedom have been studied to develop valleytronics in hexagonal lattice 2D materials. We investigated the valley degree of freedom of GaX and Janus GaXY (X, Y = S, Se, Te). By considering the spin-orbit coupling (SOC) effect in the band structure calculations, we identified the Rashba-type spin splitting in band structures of Janus Ga2SSe and Ga2STe. Further, we confirmed that the Zeeman-type spin splitting at the K and K' valleys of GaX and Janus Ga2XY show opposite spin contributions. We also calculated the Berry curvatures of GaX and Janus GaXY. In this study, we find that GaX and Janus Ga2XY have a similar magnitude of Berry curvatures, while having opposite signs at the K and K' points. In particular, GaTe and Ga2SeTe have relatively larger Berry curvatures of about 3.98 Å2 and 3.41 Å2, respectively, than other GaX and Janus Ga2XY.
RESUMO
BACKGROUND: Anxiety disorders are common during adolescence; therefore, detecting anxiety disorders among adolescents and providing appropriate treatment are crucial. Studies have suggested that watching online audiovisual broadcasts like mukbang and cookbang (hereafter mukbang), where hosts eat or cook food, may influence anxiety disorders. However, there is insufficient research on the association between watching mukbang and generalized anxiety disorder (GAD). Therefore, we investigated the association between watching mukbang and GAD among Korean adolescents. METHODS: We analyzed 51,764 adolescents who participated in the 2020 Korea Youth Risk Behavior Web-Based Survey (KYRBS). The participants were asked how frequently they watched mukbang per week over the past 12 months. Anxiety disorders were assessed using the generalized anxiety disorder-7 (GAD-7) questionnaire. A multiple logistic regression analysis was performed after adjusting for confounding variables. RESULTS: The prevalence of GAD was higher among adolescents who watched mukbang compared to those who did not (aOR: 1.100, 95% CI: 1.026-1.180, P = 0.008 in male participants; aOR: 1.090, 95% CI: 1.003-1.185, P = 0.042 in female participants). The frequency of watching mukbang showed a dose-dependent relationship with a greater likelihood of GAD in female adolescents. CONCLUSION: This study's results showed that watching mukbang is associated with GAD in Korean adolescents. Proper interventions for mental health are needed for adolescents who watch mukbang.
Assuntos
Transtornos de Ansiedade , Humanos , Masculino , Feminino , Adolescente , República da Coreia/epidemiologia , Transtornos de Ansiedade/epidemiologia , Prevalência , Televisão/estatística & dados numéricos , Comportamento do Adolescente/psicologia , Inquéritos e QuestionáriosRESUMO
A major challenge for human neuroimaging using functional MRI is the differentiation of neuronal excitation and inhibition which may induce positive and negative BOLD responses. Here we present an innovative multi-contrast laminar functional MRI technique that offers comprehensive and quantitative imaging of neurovascular (CBF, CBV, BOLD) and metabolic (CMRO2) responses across cortical layers at 7 Tesla. This technique was first validated through a finger-tapping experiment, revealing 'double-peak' laminar activation patterns within the primary motor cortex. By employing a ring-shaped visual stimulus that elicited positive and negative BOLD responses, we further observed distinct neurovascular and metabolic responses across cortical layers and eccentricities in the primary visual cortex. This suggests potential feedback inhibition of neuronal activities in both superficial and deep cortical layers underlying the negative BOLD signals in the fovea, and also illustrates the neuronal activities in visual areas adjacent to the activated eccentricities.
RESUMO
PURPOSE: Diabetes mellitus (DM) is a global health concern linked to various complications, including cardiovascular disease (CVD). However, long-term follow-up studies on the risk of DM and CVD using different blood glucose assessment methods in the general Korean population are lacking. This study aimed to assess the predictive abilities of fasting plasma glucose (FPG), 2-h oral glucose tolerance test (OGTT), and glycosylated hemoglobin (HbA1c) for new-onset DM and high CVD risk in a middle-aged and older Korean population. METHODS: This study used data from the Korean Genome and Epidemiology Study, a population-based prospective cohort. Blood sugar measures (FPG, OGTT, and HbA1c) were examined. The primary endpoint was the development of new-onset DM, and CVD risk was evaluated using the Framingham risk score. The predictive abilities for new-onset DM based on glycemic values were evaluated using Harrell's Concordance index and 95% confidence intervals. RESULTS: Among the 10,030 participants, data of 6813 participants without DM at baseline were analyzed. The study revealed that OGTT outperformed FPG and HbA1c in predicting new-onset DM. The combination of FPG and HbA1c did not significantly enhance predictions for DM compared with OGTT alone. OGTT also outperformed FPG and HbA1c in predicting high CVD risk, and this difference remained significant even after adjusting for additional confounders. CONCLUSION: OGTT has superior predictive capabilities in identifying new-onset DM and high CVD risk in the Korean population. This suggests that relying solely on individual blood sugar measures may be insufficient for assessing DM and CVD risks.
Assuntos
Glicemia , Doenças Cardiovasculares , Teste de Tolerância a Glucose , Hemoglobinas Glicadas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/sangue , Glicemia/análise , Idoso , Hemoglobinas Glicadas/análise , República da Coreia/epidemiologia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/sangue , Vida Independente/estatística & dados numéricos , Estudos Prospectivos , Valor Preditivo dos Testes , Adulto , Jejum/sangue , Fatores de RiscoRESUMO
The ring finger protein 113A (RNF113A) serves as an E3 ubiquitin ligase and a subunit of the spliceosome. Mutations in the RNF113A gene are associated with X-linked trichothiodystrophy (TTD). However, the cellular roles of RNF113A remain largely unknown. In this study, we performed transcriptome profiling of RNF113A knockout (KO) HeLa cells using RNA sequencing and revealed the upregulation of NRF2 pathway-associated genes. Further analysis confirmed that the KO of RNF113A promotes nuclear localization of the NRF2 protein and elevates the mRNA levels of NRF2 target genes. RNF113A KO cells showed high levels of intracellular reactive oxygen species (ROS) and decreased resistance to cell death following H2O2 treatment. Additionally, RNF113A KO cells more sensitively formed stress granules (SGs) under arsenite-induced oxidative stress. Moreover, RNF113A KO cells exhibited a decrease in glutathione levels, which could be attributed to a reduction in GLUT1 expression levels, leading to decreased glucose uptake reactions and lower intracellular glucose levels. These alterations potentially caused a reduction in ROS scavenging activity. Taken together, our findings suggest that the loss of RNF113A promotes oxidative stress-mediated activation of the NRF2 pathway, providing novel insights into RNF113A-associated human diseases.
RESUMO
The design and preparation of dual-functional photocatalysts for simultaneously realizing photocatalytic wastewater purification and hydrogen energy generation pose significant challenges. This article presents the engineering of a binary heterostructured photocatalyst by combining TiO2 (nanorods) and MoS2 nanosphere using a straightforward solvothermal method and the assessment of the phase structures, morphologies, and optical properties of the resulting nanocomposites using diverse analytical techniques. The TiO2(Rod)/MoS2 composite exhibits remarkable efficacy in degrading ciprofloxacin, achieving 93% removal rate within 1 h, which is four times higher than that of bare TiO2. Moreover, the optimized TiO2(Rod)/MoS2 presents an outstanding hydrogen production rate of 7415 µmol g-1, which is â¼24 times higher than that of pristine TiO2. Under UV-visible light irradiation, the TiO2(Rod)/MoS2 heterojunction displays an exceptional photocatalytic performance in terms of both photodegradation and hydrogen production, surpassing the performance of TiO2 particle/MoS2. The study findings demonstrate that TiO2(Rod)/MoS2 nanocomposites exhibit considerably improved photocatalytic degradation and hydrogen generation activities. Based on the experimental results, a possible mechanism is proposed for the transfer and separation of charge carriers in Z-scheme heterojunctions.
Assuntos
Antibacterianos , Dissulfetos , Hidrogênio , Molibdênio , Nanosferas , Nanotubos , Titânio , Titânio/química , Molibdênio/química , Catálise , Antibacterianos/química , Nanosferas/química , Hidrogênio/química , Dissulfetos/química , Nanotubos/química , Nanocompostos/química , Fotólise , Poluentes Químicos da Água/química , Águas Residuárias/química , Ciprofloxacina/químicaRESUMO
The development of advanced technologies for the fabrication of functional nanomaterials, nanostructures, and devices has facilitated the development of biosensors for analyses. Two-dimensional (2D) nanomaterials, with unique hierarchical structures, a high surface area, and the ability to be functionalized for target detection at the surface, exhibit high potential for biosensing applications. The electronic properties, mechanical flexibility, and optical, electrochemical, and physical properties of 2D nanomaterials can be easily modulated, enabling the construction of biosensing platforms for the detection of various analytes with targeted recognition, sensitivity, and selectivity. This review provides an overview of the recent advances in 2D nanomaterials and nanostructures used for biosensor and wearable-sensor development for healthcare and health-monitoring applications. Finally, the advantages of 2D-nanomaterial-based devices and several challenges in their optimal operation have been discussed to facilitate the development of smart high-performance biosensors in the future.
Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Humanos , Dispositivos Eletrônicos Vestíveis , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Técnicas Eletroquímicas/métodosRESUMO
Amorphous oxide semiconductors (AOSs) with low off-currents and processing temperatures offer promising alternative materials for next-generation high-density memory devices. The complex vertical stacking process of memory devices significantly increases the probability of encountering internal contact issues. Conventional surface treatment methods developed for planar devices necessitate efficient approaches to eliminate contact issues at deep internal interfaces in the nanoscale complex structures of AOS devices. In this work, we report the pioneering use of palladium thin film as a high-efficiency active hydrogen transfer pathway from the outside to the internal contact interface via low-temperature postannealing in the H2 atmosphere, and the formation of highly conductive metallic interlayer effectively solves the contact issues at the deeply buried interfaces in devices. The application of this method reduced the contact resistance of Pd electrodes/amorphous indium-gallium-zinc oxide (a-IGZO) thin-film by 2 orders of magnitude, and thereby the mobility of thin-film transistor was increased from 3.2 cm2 V-1 s-1 to nearly 20 cm2 V-1 s-1, preserving an excellent bias stress stability. This technology has wide applicability for the solution of contact resistance issues in oxide semiconductor devices with complex architectures.
RESUMO
The decoupled 8 × 2 transceiver array has been shown to achieve a mean B1 + of 11.7 uT with a coefficient of variation of ~11% over the intracranial brain volume for 7-T MR imaging. However, this array may be thought to give lower signal-to-noise ratio (SNR) and higher g-factors for parallel imaging compared with a radio frequency (RF) receive-only coil due to the latter's higher coil count and use of coil overlap to reduce the mutual impedance. Nonetheless, because the transceiver's highly decoupled design (pertinent for transmission) should also be constructive for reception, we measured the noise correlation, g-factors, and SNR for the decoupled transceiver in comparison with a commercial reference coil. We found that although the transceiver has half the number of receive elements in comparison with the reference coil (16 vs. 32), comparable g-factors and SNR over the head were obtained. From five subjects, the transceiver versus reference coil SNR was 65 ± 10 versus 67 ± 15. The mean noise correlation for all coil pairs was 10% ± 5% and 12% ± 9% (transceiver and reference coil, respectively). As changes in load impedance may alter the S parameters, we also examined the performance of the transceiver with tuned and matched (TM) versus untuned and unmatched (UTM) conditions on five subjects. We found that the noise correlation and SNR are robust to load variation; a noise correlation of 10% ± 5% and 10% ± 6% was determined with TM versus UTM conditions (SNRUTM/SNRTM = 0.97 ± 0.08). Finally, we demonstrate the performance of the array in human brain using T2-weighted turbo spin echo imaging, finding excellent SNR performance in both caudal and rostral brain regions.
Assuntos
Imageamento por Ressonância Magnética , Razão Sinal-Ruído , Humanos , Encéfalo/diagnóstico por imagem , Masculino , Feminino , Desenho de Equipamento , AdultoRESUMO
Importance: Transportation barriers have long been associated with poorer health outcomes; this burden is especially acute for individuals with opioid use disorder (OUD), a chronic disease often associated with low socioeconomic status. Conventional travel time analyses may not fully account for experiential components of travel, thereby understating the true travel burden and overstating treatment accessibility to opioid treatment programs (OTPs). Objective: To develop a metric of feels-like accessibility for those using public transit to access OTPs that accounts for the realistic travel burden on individuals with OUD. Design, Setting, and Participants: This cross-sectional study integrated high-resolution transit schedules and operating hours of OTPs to measure feels-like accessibility. Feels-like accessibility considers the differential outcomes of out-of-vehicle travel components and more realistically reflects individuals' transportation burden than conventional accessibility measures. Gini indices and spatial regression models were used to investigate inequities in accessibility. Geocoded data for residential addresses of 1018 overdose fatalities in Connecticut in 2019 were used as a proxy for the treatment needs of individuals with OUD. Data were analyzed between May and August 2023. Main Outcomes and Measures: Conventional and feels-like accessibility scores. Exposures: Fluctuations in public transit frequencies over the course of the day and the limited operating hours of the OTPs. Results: Of the 1018 individuals in the study, the mean (SD) age at death was 43.7 (12.6) years, 784 individuals (77%) were men, 111 (11%) were African American, and 889 (87%) were White, with other racial and ethnic categories including 18 individuals (2%). A total of 264 individuals in the sample (26%) could not access an OTP within 180 minutes. For those who could access these facilities, the average 1-way travel time was 45.6 minutes, with individuals spending approximately 70% of their trip duration on out-of-vehicle travel components. The conventional accessibility metric underestimates individuals' travel burden to OTPs as well as the inequity in accessibility compared with the feels-like accessibility metric. For example, the median (range) conventional accessibility score, defined as the number of OTPs within 120 minutes of transit travel time, was 5.0 (0.0-17.0); the median (range) feels-like accessibility score, defined as the number of OTPs within 120 minutes of transit travel time weighted to account for in- and out-of-vehicle segments, was 1.0 (0.0-10.0). There is a considerable temporal variation in travel time and accessibility depending on the departure times. Conclusions and Relevance: In this cross-sectional study of travel burdens, the calculated feels-like accessibility scores, which consider the differential outcomes of out-of-vehicle travel components (eg, walking and waiting), could better and more realistically reflect passengers' transportation burden. Policy recommendations derived from the conventional accessibility metric could be misleading, and decision-makers should use feels-like accessibility metrics that adequately capture individuals' travel burdens. In the context of access to OTPs, the findings from this study suggest that opening new OTP sites to address gaps in access due to distance to services or extending hours of operation at existing sites may ameliorate the travel burden for individuals.
Assuntos
Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides , Masculino , Humanos , Feminino , Analgésicos Opioides/uso terapêutico , Estudos Transversais , Viagem , Meios de Transporte , Transtornos Relacionados ao Uso de Opioides/epidemiologiaRESUMO
BACKGROUND: Coronary artery bypass graft (CABG) is generally used to treat complex coronary artery disease. Treatment success is affected by neointimal hyperplasia (NIH) of graft and anastomotic sites. Although sirolimus and rosuvastatin individually inhibit NIH progression, the efficacy of combination treatment remains unknown. METHODS: We identified cross-targets associated with CABG, sirolimus, and rosuvastatin by using databases including DisGeNET and GeneCards. GO and KEGG pathway enrichment analyses were conducted using R studio, and target proteins were mapped in PPI networks using Metascape and Cytoscape. For in vivo validation, we established a balloon-injured rabbit model by inducing NIH and applied a localized perivascular drug delivery device containing sirolimus and rosuvastatin. The outcomes were evaluated at 1, 2, and 4 weeks post-surgery. RESULTS: We identified 115 shared targets between sirolimus and CABG among databases, 23 between rosuvastatin and CABG, and 96 among all three. TNF, AKT1, and MMP9 were identified as shared targets. Network pharmacology predicted the stages of NIH progression and the corresponding signaling pathways linked to sirolimus (acute stage, IL6/STAT3 signaling) and rosuvastatin (chronic stage, Akt/MMP9 signaling). In vivo experiments demonstrated that the combination of sirolimus and rosuvastatin significantly suppressed NIH progression. This combination treatment also markedly decreased the expression of inflammation and Akt signaling pathway-related proteins, which was consistent with the predictions from network pharmacology analysis. CONCLUSIONS: Sirolimus and rosuvastatin inhibited pro-inflammatory cytokine production during the acute stage and regulated Akt/mTOR/NF-κB/STAT3 signaling in the chronic stage of NIH progression. These potential synergistic mechanisms may optimize treatment strategies to improve long-term patency after CABG.
Assuntos
Medicamentos de Ervas Chinesas , Sirolimo , Animais , Coelhos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Rosuvastatina Cálcica/farmacologia , Rosuvastatina Cálcica/uso terapêutico , Hiperplasia/tratamento farmacológico , Metaloproteinase 9 da Matriz , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt , Neointima , Ponte de Artéria Coronária/efeitos adversosRESUMO
Sol-gel transition regulates mass transport in fluidic systems. We designed pre-gelators that react with fluoride anions to form a metallogel barrier. A combination of spectroscopic, rheological, and X-ray spectroscopic studies elucidated the mechanism of gelation involving desilylation followed by metal coordination-driven self-assembly, the kinetics of which can be finely controlled by the chemical structure of the silyl substituents. Protonation-induced degelation restores flow, allowing the metallogel to function as a reversible chemical valve.
RESUMO
Lithium (Li) metal is considered an ultimate anode owing to its high specific capacity and energy density. However, uncontrolled Li dendrite growth and low Coulombic efficiency have limited the application of Li metal. Among various strategies introduced to address these limitations, the surface modification of polyolefin separators with functional materials has been widely adopted for improving the mechanical and thermal stabilities of polymer separators and to protect the separator from the penetration of Li dendrites. Herein, we report a new functional polymer separator that is surface-altered with a graphene-based Li-ion flux regulator (GLR) to homogenize the Li-ion flux and suppress the growth of sharp dendritic Li in Li metal batteries. The nanopores distributed through the GLR structure serve as channels for ion transport and junctions for electron transfer, facilitating efficient electrolyte penetration and rapid charge transfer between graphene (Gr) sheets. Owing to these favorable features of porous GLR, a Li-Cu cell with the GLR surface-altered polypropylene separator (GLR-PP) delivers excellent cycle and rate performances compared to a Li-Cu cell with a Gr surface-altered polypropylene separator. In addition, among the tested cells, Li-sulfur cells with GLR-PP exhibit the most stable cycle performance over 500 cycles. These results demonstrate that the concept of tailoring the surface of a polymer separator with porous 2D materials is an effective strategy for improving the long-term cycle stability and electrochemical kinetics of Li metal-based batteries and would trigger further relevant studies.
RESUMO
The surface treatment for a polymer-ceramic composite is additionally performed in advanced material industries. To prepare the composite without a surface treatment, the simplest way to manufacture an advanced ceramic-particle is devised. The method is the formation of a nanocrystalline composite layer through the simple liquid-phase sintering. Using magnesia (MgO) which shows hydrophilicity, a nanocrystalline surface layer is realized by liquid-phase sintering. The amorphous matrix of nanocrystalline composite layer makes MgO hydrophobic and ensures miscibility with polymers, and the nanocrystalline MgO ensures high thermal conductivity. In addition, the liquid phase removes the open pores and makes the surface morphology smooth MgO with smooth surface (MgO-SM). Thermal interface materials (TIM) prepared with MgO-SM and epoxy show a high thermal conductivity of ≈7.5 W m-1 K-1 , which is significantly higher than 4.5 W m-1 K-1 of pure MgO TIM. Consequently, the formation process of a nanocrystalline surface layer utilizing simple liquid-phase sintering is proposed as a fabrication method for a next-generation ceramic-filler. In addition, it is fundamentally identified that the thermal conductivity of MgO depends on the Mg deficiency, and therefore a poly-crystal MgO-SM (produced at a low temperature) has a higher thermal conductivity than a single-crystal MgO (produced at a high temperature).
RESUMO
Gastric problems are often caused by the well-known Helicobacter pylori (H. pylori) bacterium. One of the biggest obstacles to the treatment of H. pylori infections is increasing the antibiotic resistance. During our search for naturally derived anti-H. pylori compounds, six major compounds were isolated from the methylene chloride (CH2Cl2) and ethyl acetate (EtOAc) fractions of Rumex acetosa that showed anti-H. pylori activity. Three anthraquinones and three anthraquinone glucosides were identified as the major chemical constituents of the CH2Cl2 and EtOAc fractions, respectively. The chemical structures were identified to be emodin (1), chrysophanol (2), physcion (3), emodin-8-O-ß-d-glucoside (4), chrysophanol-8-O-ß-d-glucoside (5), and physcion-8-O-ß-d-glucoside (6) by UV, 1H NMR, 13C NMR, and mass spectrometry. Anti-H. pylori activity, including the minimum inhibitory concentration (MIC) value of each compound, was evaluated against two H. pylori strains. All isolates exhibited anti-H. pylori activity with different potencies, with an MIC value ranging between 3.13 and 25 µM. However, some variations were found between the two strains. While compound 5 displayed the most potent antibacterial activity with an MIC50 value of 8.60 µM and an MIC90 value of 15.7 µM against H. pylori strain 51, compound 1 exhibited the most potent inhibitory activity against H. pylori strain 43504. The two compounds also showed moderate urease inhibitory activity, with compound 1 demonstrating activity higher than that of compound 5. Furthermore, a molecular docking study revealed the high binding ability of compounds 1 and 5 to the active site of H. pylori urease. The present study suggests that the six anthraquinones isolated from R. acetosa with the whole parts of this plant may be natural candidates for the treatment of H. pylori infection. Further studies are required to determine the exact mechanism of action and to evaluate safety issues in the human body.