Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Ocul Surf ; 34: 370-380, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332677

RESUMO

PURPOSE: This study aimed to investigate the therapeutic potential of extracellular vesicles (EVs) derived from human amniotic epithelial cells (hAEC-EVs) for Dry Eye Disease (DED) treatment. METHODS: Highly purified EVs were isolated from the culture supernatants of hAECs, which obtained from term placenta and characterized. Proteomic contents were analyzed for assessing its biological function related to the therapeutic potentials for DED. Subsequently, we examined the therapeutic efficacy of hAEC-EVs on human corneal epithelial cells exposed to hyperosmotic stress and in an experimental DED mouse model induced by desiccation stress. RESULTS: Proteomic analysis of hAEC-EVs revealed proteins linked to cell proliferation and anti-inflammatory responses. We demonstrated efficient uptake of hAEC-EVs by ocular surface cells. Under DED conditions, EV treatment increased corneal epithelial cell proliferation and migration, and concurrently reducing inflammatory cytokines. In the DED mouse model, hAEC-EVs showed significant improvements in corneal staining score, tear secretion, corneal irregularity, and conjunctival goblet cell density. Additionally, hAEC-EVs exhibited a mitigating effect on ocular surface inflammation induced by desiccation. CONCLUSIONS: These findings suggest that hAEC-EVs hold potential as a cell-free therapy for corneal epithelial defects and ocular surface diseases, presenting a promising treatment option for DED.

2.
Biosens Bioelectron ; 267: 116681, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39277921

RESUMO

Conjunctival goblet cells (CGCs) are specialized epithelial cells playing key roles for ocular surface homeostasis, and their examination is important for diagnosing ocular surface diseases. Despite recent advancements in high-contrast CGC imaging for non-invasive examination, significant challenges remain for human applications. High-speed large-area imaging over the curved ocular surface is needed to assess statistically meaningful CGCs in the extensive human conjunctiva. To address this challenge, we developed a novel surface detection method and an integrated microscopy system for human use. With both a long detection range of 2 mm and a high update rate of 50 Hz, the surface detection method enabled real-time surface tracking during large-area imaging. The integrated microscopy could complete 5 × 2 patch imaging in approximately 10 s. CGC density analysis showed significantly reduced uncertainties with large-area imaging. This is the first demonstration of non-contact large-area cellular examination in humans, and this new development holds promise for non-invasive CGC examination and accurate diagnosis of ocular surface diseases.

4.
Opt Lett ; 49(12): 3368-3371, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875622

RESUMO

We present a versatile extended depth-of-field (EDOF) wide-field fluorescence microscopy using a new, to the best of our knowledge, active device, micro-mirror array lens system (MALS) for calibration-free and orientation-insensitive EDOF imaging. The MALS changed the focal plane during image acquisition, and the system could be operated in any orientation. Two EDOF imaging modes of high-speed accumulation and low-speed surface sectioning were implemented. The performance was demonstrated in non-contact imaging of conjunctival goblet cells in live mice and depth-resolved cellular examination of ex-vivo human cancer specimens. MALS-based EDOF microscopy has potential for versatile cellular examination.


Assuntos
Lentes , Microscopia de Fluorescência , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Animais , Camundongos , Humanos , Células Caliciformes/citologia , Túnica Conjuntiva/citologia , Túnica Conjuntiva/diagnóstico por imagem
5.
Elife ; 122024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488831

RESUMO

Nondestructive pathology based on three-dimensional (3D) optical microscopy holds promise as a complement to traditional destructive hematoxylin and eosin (H&E) stained slide-based pathology by providing cellular information in high throughput manner. However, conventional techniques provided superficial information only due to shallow imaging depths. Herein, we developed open-top two-photon light sheet microscopy (OT-TP-LSM) for intraoperative 3D pathology. An extended depth of field two-photon excitation light sheet was generated by scanning a nondiffractive Bessel beam, and selective planar imaging was conducted with cameras at 400 frames/s max during the lateral translation of tissue specimens. Intrinsic second harmonic generation was collected for additional extracellular matrix (ECM) visualization. OT-TP-LSM was tested in various human cancer specimens including skin, pancreas, and prostate. High imaging depths were achieved owing to long excitation wavelengths and long wavelength fluorophores. 3D visualization of both cells and ECM enhanced the ability of cancer detection. Furthermore, an unsupervised deep learning network was employed for the style transfer of OT-TP-LSM images to virtual H&E images. The virtual H&E images exhibited comparable histological characteristics to real ones. OT-TP-LSM may have the potential for histopathological examination in surgical and biopsy applications by rapidly providing 3D information.


Assuntos
Microscopia , Neoplasias , Masculino , Humanos , Microscopia/métodos , Corantes Fluorescentes , Pele , Amarelo de Eosina-(YS) , Imageamento Tridimensional/métodos
6.
Transl Vis Sci Technol ; 12(12): 22, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149964

RESUMO

Purpose: The purpose of this study was to evaluate a noninvasive conjunctival goblet cell (GC) imaging method for assessing dry eye disease (DED) in an experimental mouse model. Methods: Moxifloxacin-based fluorescence microscopy (MBFM) was used to examine GCs noninvasively in 56 mice. Forty-two (42) DED-induced mice were divided into 2 groups and treated topically for 14 days with cyclosporine (CsA) or normal saline (NS). In vivo MBFM imaging and clinical DED evaluations were performed and goblet cell density (GCD) and goblet cell area (GCA) were obtained and compared with histological GCD using periodic acid-Schiff (PAS) staining. Correlation and receiver operating characteristic (ROC) analyses showed MBFM's high diagnostic value. Results: The GCD and GCA of the DED mice obtained from in vivo MBFM imaging were highly correlated with clinical DED parameters and GCD obtained from PAS histology. The therapeutic effect of CsA, as observed by in vivo MBFM, was significant with respect to that of NS treatment. The ROC curves derived from in vivo MBFM showed high diagnostic value in assessing DED. Conclusions: The proposed noninvasive method has high diagnostic value in assessing the severity of DED and the effect of treatment for this disease. Translational Relevance: A noninvasive imaging method using moxifloxacin-based fluorescence microscopy was evaluated for assessing DED in an experimental mouse model. The method showed high diagnostic value in assessing the severity of DED and the effect of treatment, bridging the gap between basic research and clinical treatment. The study provides a promising tool for diagnosing and monitoring DED.


Assuntos
Síndromes do Olho Seco , Células Caliciformes , Animais , Camundongos , Moxifloxacina , Túnica Conjuntiva/diagnóstico por imagem , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Modelos Animais de Doenças , Síndromes do Olho Seco/diagnóstico por imagem
7.
Sci Rep ; 13(1): 22839, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129447

RESUMO

Goblet cells (GCs) in the conjunctiva are specialized epithelial cells secreting mucins for the mucus layer of protective tear film and playing immune tolerance functions for ocular surface health. Because GC loss is observed in various ocular surface diseases, GC examination is important for precision diagnosis. Moxifloxacin-based fluorescence microscopy (MBFM) was recently developed for non-invasive high-contrast GC visualization. MBFM showed promise for GC examination by high-speed large-area imaging and a robust analysis method is needed to provide GC information. In this study, we developed a deep learning framework for GC image analysis, named dual-channel attention U-Net (DCAU-Net). Dual-channel convolution was used both to extract the overall image texture and to acquire the GC morphological characteristics. A global channel attention module was adopted by combining attention algorithms and channel-wise pooling. DCAU-Net showed 93.1% GC segmentation accuracy and 94.3% GC density estimation accuracy. Further application to both normal and ocular surface damage rabbit models revealed the spatial variations of both GC density and size in normal rabbits and the decreases of both GC density and size in damage rabbit models during recovery after acute damage. The GC analysis results were consistent with histology. Together with the non-invasive high-contrast imaging method, DCAU-Net would provide GC information for the diagnosis of ocular surface diseases.


Assuntos
Aprendizado Profundo , Oftalmopatias , Lagomorpha , Animais , Coelhos , Células Caliciformes/metabolismo , Túnica Conjuntiva/patologia , Lágrimas/metabolismo , Oftalmopatias/metabolismo , Contagem de Células
8.
BMC Biol ; 21(1): 248, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940973

RESUMO

BACKGROUND: Open-top light-sheet microscopy (OT-LSM) is a specialized microscopic technique for the high-throughput cellular imaging of optically cleared, large-sized specimens, such as the brain. Despite the development of various OT-LSM techniques, achieving submicron resolution in all dimensions remains. RESULTS: We developed a high-resolution open-top axially swept LSM (HR-OTAS-LSM) for high-throughput and high-resolution imaging in all dimensions. High axial and lateral resolutions were achieved by using an aberration-corrected axially swept excitation light sheet in the illumination arm and a high numerical aperture (NA) immersion objective lens in the imaging arm, respectively. The high-resolution, high-throughput visualization of neuronal networks in mouse brain and retina specimens validated the performance of HR-OTAS-LSM. CONCLUSIONS: The proposed HR-OTAS-LSM method represents a significant advancement in the high-resolution mapping of cellular networks in biological systems such as the brain and retina.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Microscopia de Fluorescência/métodos
10.
Lasers Surg Med ; 55(4): 378-389, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36802075

RESUMO

OBJECTIVES: High-contrast and high-resolution imaging techniques would enable real-time sensitive detection of the gastrointestinal lesions. This study aimed to investigate the feasibility of novel dual fluorescence imaging using moxifloxacin and proflavine in the detection of neoplastic lesions of the human gastrointestinal tract. METHODS: Patients with the colonic and gastric neoplastic lesions were prospectively enrolled. The lesions were biopsied with forceps or endoscopically resected. Dual fluorescence imaging was performed by using custom axially swept wide-field fluorescence microscopy after topical moxifloxacin and proflavine instillation. Imaging results were compared with both confocal imaging with cell labeling and conventional histological examination. RESULTS: Ten colonic samples (one normal mucosa, nine adenomas) from eight patients and six gastric samples (one normal mucosa, five adenomas) from four patients were evaluated. Dual fluorescence imaging visualized detail cellular structures. Regular glandular structures with polarized cell arrangement were observed in normal mucosa. Goblet cells were preserved in normal colonic mucosa. Irregular glandular structures with scanty cytoplasm and dispersed elongated nuclei were observed in adenomas. Goblet cells were scarce or lost in the colonic lesions. Similarity analysis between moxifloxacin and proflavine imaging showed relatively high correlation values in adenoma compared with those in normal mucosa. Dual fluorescence imaging showed good detection accuracies of 82.3% and 86.0% in the colonic and the gastric lesions, respectively. CONCLUSIONS: High-contrast and high-resolution dual fluorescence imaging was feasible for obtaining detail histopathological information in the gastrointestinal neoplastic lesions. Further studies are needed to develop dual fluorescence imaging as an in vivo real-time visual diagnostic method.


Assuntos
Adenoma , Proflavina , Humanos , Moxifloxacina , Estudos Prospectivos , Estudos de Viabilidade , Adenoma/patologia , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA