Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Dent J ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38849287

RESUMO

INTRODUCTION AND AIMS: The gaps at the margins of restorative composite resin can increase as the carious process occurs underneath the materials, causing further demineralization along the tooth cavity wall. The aim of this study was to evaluate the effects of restorative resin composite containing hydrated calcium silicate (hCS) filler on enamel protection against demineralization by simulating microleakage between the test material and teeth in a cariogenic environment. METHODS: The experimental resin composites were composed of 70 wt.% filler, which was mixed with a glass filler and hCS in a weight ratio of 70.0% glass (hCS 0), 17.5% hCS + 52.5% glass (hCS 17.5), 35.0% hCS + 35.0% glass (hCS 35.0), and 52.5% hCS + 17.5% glass (hCS 52.5). A light-cured experimental resin composite disk was positioned over a polished bovine enamel disk, separated by a 30-µm gap, and immersed in artificial saliva with pH 4.0 for 15, 30, and 60 days. After the immersion period, the enamel disk was separated from the resin composite disk and evaluated using a microhardness tester, atomic force microscopy, and polarized light microscopy. The opposing sides of the enamel and resin composite disks were observed using scanning electron microscopy/energy dispersive X-ray spectrometry. RESULTS: The enamel surface showed a significant increase in microhardness, decreased roughness, and remineralization layer as the proportion of hCS increased (P < .05). In the scanning electron microscopy image, the enamel surface with hCS 35.0 and 52.5 after all experimental immersion periods, showed a pattern similar to that of a sound tooth. CONCLUSIONS: The results demonstrated that increasing the hCS filler level of restorative resin composites significantly decreased enamel demineralization. CLINICAL RELEVANCE: Hydrated calcium silicate laced restorative resin composites may be a promising dental biomaterial for protecting teeth against demineralization and preventing secondary caries around restorations.

2.
Dent Mater J ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38825450

RESUMO

This study aimed to propose the measurement methods for resin composite translucency using four shades of resin composite and four spectrophotometers. Four methods were used for measuring translucency: (A) color measurement using reflectance mode, (B) visible light spectrum measurement using reflectance mode, (C) color measurement using transmittance mode, (D) visible light spectrum measurement using transmittance mode. Although there was a significant difference among the results of the translucency measuring methods, the same tendency was observed for translucency parameters obtained using each spectrophotometer. Therefore, the four methods can potentially be used as translucency measuring methods for resin composite.

3.
Dent Mater J ; 43(1): 58-66, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38008438

RESUMO

Dental bases require low thermal conductivity and good mechanical properties, such as bonding with composite resins. This study aims to elucidate the physicochemical properties of premixed mineral trioxide aggregate (MTA) for its suitability as a dental base and to explore the optimal adhesive strategy with composite resin. The thermal conductivity and compressive strength of this premixed MTA are 0.12 W/(m•K) and 93.76 MPa, respectively, Which are deemed adequate for its application as dental base. When bonded to composite resin, the use of 37% phosphoric acid etching before applying the Clearfil SE bond significantly reduced the bonding strength between composite resin and premixed MTA. This was because the compressive strength and Vickers hardness of premixed MTA decreased, and tricalcium silicate was dissolved from the surface during acid etching. Therefore, it is recommended to avoid using 37% phosphoric acid etching when bonding premixed MTA and composite resin as a dental base.


Assuntos
Compostos de Alumínio , Compostos de Cálcio , Resinas Compostas , Colagem Dentária , Óxidos , Ácidos Fosfóricos , Silicatos , Resinas Compostas/química , Cimentos de Resina/química , Condicionamento Ácido do Dente , Propriedades de Superfície , Teste de Materiais , Resistência ao Cisalhamento , Combinação de Medicamentos
4.
Polymers (Basel) ; 15(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177192

RESUMO

Demineralized white lesions are a common problem when using orthodontic resin cement, which can be prevented with the addition of antibacterial substances. However, the addition of antibacterial substances such as zinc oxide alone may result in the deterioration of the resin cement's functions. Halloysite nanotubes (HNTs) are known to be biocompatible without adversely affecting the mechanical properties of the material while having the ability to load different substances. The purpose of this study was to prepare orthodontic resin cement containing HNT fillers loaded with ZnO (ZnO/HNTs) and to investigate its mechanical, physical, chemical, and antibacterial properties. A group without filler was used as a control. Three groups containing 5 wt.% of HNTs, ZnO, and ZnO/HNTs were prepared. TEM and EDS measurements were carried out to confirm the morphological structure of the HNTs and the successful loading of ZnO onto the HNTs. The mechanical, physical, chemical, and antibacterial properties of the prepared orthodontic resin cement were considered. The ZnO group had high flexural strength and water absorption but a low depth of cure (p < 0.05). The ZnO/HNTs group showed the highest shear bond strength and film thickness (p < 0.05). In the antibacterial test, the ZnO/HNTs group resulted in a significant decrease in the biofilm's metabolic activity compared to the other groups (p < 0.05). ZnO/HNTs did not affect cell viability. In addition, ZnO was cytotoxic at a concentration of 100% in the extract. The nanocomposite developed in this study exhibited antimicrobial activity against S. mutans while maintaining the mechanical, physical, and chemical properties of orthodontic resin cement. Therefore, it has the potential to be used as an orthodontic resin cement that can prevent DWLs.

5.
Biomater Res ; 27(1): 25, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36978203

RESUMO

BACKGROUND: White Portland cement is a calcium silicate material. It exhibits antibacterial properties and is biocompatible. In addition, calcium silicate-based materials are known to release calcium ions and form apatite. The purpose of this study was to develop a novel bioactive restorative resin composite with antibacterial and apatite forming properties to prevent tooth caries at the interface of teeth and restorative materials, by incorporation of hydrated calcium silicate (hCS) derived from white Portland cement. METHODS: To prepare the experimental composite resins, a 30 wt% light-curable resin matrix and 70 wt% filler, which was mixed with hCS and silanized glass powder were prepared in following concentrations: 0, 17.5, 35.0, and 52.5 wt% hCS filler. The depth of cure, flexural strength, water sorption, solubility, and antibacterial effect were tested. After immersion in artificial saliva solution for 15, 30, 60, and 90 days, ion concentration by ICP-MS and apatite formation using SEM-EDS, Raman spectroscopy and XRD from experimental specimens were analyzed. RESULTS: All experimental groups showed clinically acceptable depths of cure and flexural strength for the use as the restorative composite resin. Water sorption, solubility, released Ca and Si ions increased with the addition of hCS to the experimental composite resin. Experimental groups containing hCS showed greater antibacterial effects compared with the 0 wt% hCS filler group (p < 0.05). The 52.5 wt% hCS filler group produced precipitates mainly composed of Ca and P detected as hydroxyapatite after immersion in artificial saliva solution for 30, 60, and 90 days. CONCLUSIONS: This results show that composite resins containing hCS filler is effective in antibacterial effects. hCS has also apatite formation ability for reducing gap size of microleakage by accumulating hydroxyapatite precipitates at the restoration-tooth interface. Therefore, novel composite resin containing hCS is promising bioactive resin because of its clinically acceptable physiochemical properties, antibacterial properties, and self-sealing potential for prevention of microleakage for longer usage of restorations.

6.
Biomaterials ; 296: 122063, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36848780

RESUMO

Poly-(methyl methacrylate) (PMMA) is the preferred biomaterial for orofacial prostheses used for the rehabilitation of naso-palatal defects. However, conventional PMMA has limitations determined by the complexity of the local microbiota and the friability of oral mucosa adjacent to these defects. Our purpose was to develop a new type of PMMA, i-PMMA, with good biocompatibility and better biological effects such as higher resistance to microbial adhesion of multiple species and enhanced antioxidant effect. The addition of cerium oxide nanoparticles to PMMA using a mesoporous nano-silica carrier and polybetaine conditioning, resulted in an increased release of cerium ions and enzyme mimetic activity, without tangible loss of mechanical properties. Ex vivo experiments confirmed these observations. In stressed human gingival fibroblasts, i-PMMA reduced the levels of reactive oxygen species and increased the expression of homeostasis-related proteins (PPARg, ATG5, LCI/III). Furthermore, i-PMMA increased the levels of expression of superoxide dismutase and mitogen-activated protein kinases (ERK and Akt), and cellular migration. Lastly, we demonstrated the biosafety of i-PMMA using two in vivo models: skin sensitization assay and oral mucosa irritation test, respectively. Therefore, i-PMMA offers a cytoprotective interface that prevents microbial adhesion and attenuates oxidative stress, thus supporting physiological recovery of the oral mucosa.


Assuntos
Cério , Polimetil Metacrilato , Humanos , Metacrilatos , Cério/farmacologia , Próteses e Implantes
7.
J Periodontal Res ; 58(2): 381-391, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36641544

RESUMO

INTRODUCTION: Microbiome from a "healthy cohort" is used as a reference for comparison to cases and intervention. However, the studies with cohort-based clinical research have not sufficiently accounted for the multistability in oral microbial community. The screening is limited to phenotypic features with marked variations in microbial genomic markers. Herein, we aimed to assess the stability of the oral microbiome across time from an intervention-free "healthy" cohort. METHODS: We obtained 33 supragingival samples of 11 healthy participants from the biobank. For each participant, we processed one sample as baseline (T0) and two samples spaced at 1-month (T1) and 3-month (T2) intervals for 16S ribosomal RNA gene sequencing analysis. RESULTS: We observed that taxonomic profiling had a similar pattern of dominant genera, namely, Rothia, Prevotella, and Hemophilus, at all time points. Shannon diversity revealed a significant increase from T0 (p < .05). Bray Curtis dissimilarity was significant (R = -.02, p < .01) within the cohort at each time point. Community stability had negative correlation to synchrony (r = -.739; p = .009) and variance (r = -.605; p = .048) of the species. Clustering revealed marked differences in the grouping patterns between the three time points. For all time points, the clusters presented a substantially dissimilar set of differentially abundant taxonomic and functional biomarkers. CONCLUSION: Our observations indicate towards the presence of multistable states within the oral microbiome in an intervention-free healthy cohort. For a conclusive and meaningful long-term reference, dental clinical research should account for multistability in the personalized therapy approach to improve the identification and classification of reliable markers.


Assuntos
Microbiota , Micrococcaceae , Humanos , RNA Ribossômico 16S/genética , Microbiota/genética , Estudos de Coortes , Biomarcadores , Micrococcaceae/genética
8.
J Mech Behav Biomed Mater ; 138: 105634, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543086

RESUMO

Poly (methyl methacrylate) (PMMA) is a commonly used material for the fabrication of biomedical appliances. Although PMMA has several advantages, it is susceptible to microbial insults with practical use. Therefore, different bioactive nanomaterials, such as nanoceria (CeN), have been proposed to enhance the properties of PMMA. In this study, we investigated the effect of the incorporation of CeN into PMMA with and without the use of mesoporous silica nanoparticle (SBA-15) carriers. The unmodified PMMA specimens (control, CTRL) were compared to groups containing SBA-15, CeN, and the synthesized SBA-15 impregnated with CeN (SBA-15@CeN) at different loading percentages. The mechanical and physical properties of the different SBA-15@CeN groups and their effects on cell viability were investigated, and the optimal CeN concentration was identified accordingly. Our results revealed that flexural strength was significantly (P < 0.01) reduced in the SBA-15@CeN3× group (containing 3-fold the CeN wt. %). Although the surface microhardness increased with the increase in the wt. % of SBA-15@CeN, cell viability was significantly reduced (P < 0.001). The SBA-15@CeN1× group had the optimal concentration and displayed significant resistance to single-and multispecies microbial colonization. Finally, the enzymatic activity of CeN was significantly high in the SBA-15@CeN1× group. The proinflammatory markers (IL-6, IL-1ß, TNF-α, CD80, and CD86) showed a significant (P < 0.001) multifold reduction in lipopolysaccharide-induced RAW cells treated with a 5-day eluate of the SBA-15@CeN1× group. These results indicate that the addition of SBA-15@CeN at 1.5 wt % improves the biological response of PMMA without compromising its mechanical properties.


Assuntos
Bases de Dentadura , Polimetil Metacrilato , Dióxido de Silício , Propriedades de Superfície , Teste de Materiais
9.
Biomater Sci ; 11(2): 554-566, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36472228

RESUMO

Hybrid ionomer cements (HICs) are aesthetic polyelectrolyte cements that have been modified with a resin. The setting of HICs occurs by both monomer polymerization and an acid-base reaction. In addition, HICs contain a resin, which is substituted for water. Thus, the competition between the setting reactions and reduced water content inherently limits polysalt formation and, consequently the bioactive interactions. In this study, we explored the effects of polybetaine zwitterionic derivatives (mZMs) on the augmentation of the bioactive response of HICs. The polybetaines were homogenized into an HIC in different proportions (α, ß, and γ) at 3% w/v. Following basic characterization, the bioactive response of human dental pulp stem cells (hDPSCs) was evaluated. The augmented release of the principal constituent ions (strontium, silica, and fluoride) from the HIC was observed with the addition of the mZMs. Modification with α-mZM elicited the most favorable bioactive response, namely, increased ion elution, in vitro calcium phosphate precipitation, and excellent biofouling resistance, which deterred the growth of the bridging species of Veillonella. Moreover, α-mZM resulted in a significant increase in the hDPSC response, as confirmed by a significant increase (p < 0.05) in alizarin red staining. The results of mRNA expression tests, performed using periodically refreshed media, showed increased and early peak expression levels for RUNX2, OCN, and OPN in the case of α-mZM. Based on the results of the in vitro experiments, it can be concluded that modification of HICs with polybetaine α-mZM can augment the overall biological response.


Assuntos
Fluoretos , Cimentos de Ionômeros de Vidro , Humanos , Cimentos Ósseos , Teste de Materiais
10.
Dent Mater J ; 42(1): 30-41, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36244738

RESUMO

This study was aimed to evaluate the effect of thickness (1, 2, 3, and 4 mm) on the translucency of resin-based composites (RBCs) and glass-ceramics, and compare the influence of the thickness of those materials on the translucency parameter (TP) value. The materials were divided into two groups, eight RBCs in Group 1 and five glass-ceramics in Group 2 and TP, ΔL*, Δa*, and Δb* were compared. Statistically significant differences were present in the 2, 3, and 4 mm in the TP, in the 2 and 4 mm in ΔL*, and in all thicknesses in Δa* and Δb* betweent the two groups. The TP of RBCs and glass-ceramics decreased as thickness increased, especially from 1 mm to 2 mm. The TP values of the RBCs were more significantly decreased as the thickness of the material increased from 2 mm to 4 mm than those of the glass-ceramics.


Assuntos
Materiais Dentários , Porcelana Dentária , Cor , Teste de Materiais , Cerâmica , Propriedades de Superfície
11.
Materials (Basel) ; 15(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36234260

RESUMO

Calcium silicate cement (CSC) is widely used as an endodontic material in clinical applications such as direct pulp capping, pulpotomy, or root canal. CSC has good biocompatibility, sealing properties, and the ability to enhance hard tissue regeneration. However, the disadvantage of CSC is the difficulty in handling when placing it into endodontic tissue due to the long setting time. Several attempts have been made to improve handling of CSC; however, these methods were limited by osteogenic properties. To overcome such a disadvantage, this study investigated the use of Pluronic F127 (F127) for the development easy-to-handle novel endodontic CSCs with osteogenic properties. In this case, different concentrations of F127 (5%, 10%, 20%, 30%, and 40%) were implemented to generate CSC specimens H5, H10, H20, H30, and H40, respectively. Calcium ion was continuously released for 28 days. In addition, each group resulted in apatite formation for 28 days corresponding to calcium ion release. The concentration of F127 showed opposite relationships with water solubility and compressive strength. The H20 group showed a high level of osteogenic activity compared to other groups at 14 days. Mineralization of the H20 group was higher than that of the other groups. This study indicates that the novel F127-based hydrogel with CSC can potentially be used as endodontic filler.

12.
J Dent ; 123: 104204, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724940

RESUMO

OBJECTIVES: The objective of this study was to evaluate an orthodontic adhesive containing hydrated calcium silicate (hCS) in terms of its bond strength with the enamel surface and its acid-neutralization and apatite-forming abilities. METHODS: The experimental orthodontic adhesives were composed of 30 wt.% resin matrix and 70 wt.% filler, which itself was a mixture of silanized glass filler and hCS in weight ratios of 100% glass filler (hCS 0), 17.5% hCS (hCS 17.5), 35% hCS (hCS 35.0), and 52.5% hCS (hCS 52.5). The degree of conversion (DC) and shear bond strength (SBS) of bovine enamel surfaces were tested. pH measurements were performed immediately upon submersion of the specimens in a lactic acid solution. The surface precipitates that formed on specimens immersed in phosphate-buffered saline (PBS) were analyzed by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and Raman spectroscopy after 15, 30, and 90 days. RESULTS: The experimental groups exhibited no significant differences in DC and had clinically acceptable SBS values. The hCS-containing groups showed increasing pH values as more hCS was added. hCS 52.5 produced Ca- and P-containing surface precipitates after PBS immersion, and hydroxyapatite deposition was detected after 15, 30, and 90 days. CONCLUSIONS: These results suggest that orthodontic adhesives containing hCS are effective for acid neutralization. Furthermore, hCS has an apatite-forming ability for enamel remineralization. CLINICAL SIGNIFICANCE: The novel orthodontic adhesive containing hCS exhibits a potential clinical benefit against demineralization and enhanced remineralization of the enamel surface around or beneath the orthodontic brackets.


Assuntos
Colagem Dentária , Braquetes Ortodônticos , Animais , Apatitas , Compostos de Cálcio , Bovinos , Colagem Dentária/métodos , Cimentos Dentários/química , Teste de Materiais , Cimentos de Resina/química , Resistência ao Cisalhamento , Silicatos , Propriedades de Superfície
13.
Am J Orthod Dentofacial Orthop ; 162(1): 93-102.e1, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35772876

RESUMO

INTRODUCTION: In this study, we aimed to evaluate and compare the bracket positioning accuracy of the indirect bonding (IDB) transfer tray fabricated in-clinic using the tray printing (TP) and marker-model printing methods (MP). METHODS: The TP group was further divided into 2 groups (single-tray printing [STP] and multiple-tray printing [MTP]) depending on the presence of a tray split created using the 3-dimensional (3D) software. Five duplicated plaster models were used for each of the 3 experimental groups, and a total of 180 artificial teeth, except the second molar, were evaluated in the experiment. The dental model was scanned using a model scanner (E3; 3Shape Dental Systems, Copenhagen, Denmark). Virtual brackets were placed on facial axis points, and the IDB trays were designed and fabricated using a 3D printer (VIDA; EnvisionTEC, Mich). The accuracy of bracket positioning was evaluated by comparing the planned bracket positions and the actual bracket positions using 3D analysis on inspection software. The main effects and first-order interaction effects were analyzed together by analysis for the analysis of variance. RESULTS: The mean distance and height errors were significantly lower in the STP group than those in the MP and MTP groups (P <0.05). The mean distance error was 0.06 mm in the STP group and 0.09 mm in the MP and MTP groups. The mean height error was 0.10 mm in the STP group and 0.15 mm and 0.18 mm in MP and MTP groups, respectively. However, no significant differences were observed in the angular errors among the 3 groups. CONCLUSIONS: The in-office-fabricated IDB system with computer-aided design and 3D printer is clinically applicable after considering the linear and angular errors. We recommend IDB trays fabricated using the STP method owing to the lower frequency of bracket positioning errors and ease of fabrication.


Assuntos
Colagem Dentária , Braquetes Ortodônticos , Desenho Assistido por Computador , Colagem Dentária/métodos , Humanos , Modelos Dentários , Impressão Tridimensional
14.
Clin Oral Investig ; 26(8): 5301-5312, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35459971

RESUMO

OBJECTIVES: This study aimed to evaluate the effects of 30% hydrogen peroxide (HP) solution containing various contents of 45S5 bioactive glass (BAG) on whitening efficacy and enamel surface properties after simulating the clinical bleaching procedure. MATERIALS AND METHODS: A total of 60 bovine enamel specimens discolored with black tea were divided into five groups treated with distilled water (DW), HP, 0.01 wt.% BAG + HP, 1.0 wt.% BAG + HP, and 20.0 wt.% BAG + HP (n = 12). The pH change was observed for 20 min immediately after mixing the experimental solutions, which were applied for 20 min/week, at 37 °C over 21 days. Color, gloss, roughness, microhardness, and micromorphology measurements were conducted before and after bleaching treatment. RESULTS: All groups containing BAG experienced an increase in pH from 3.5 to 5.5 in less than 1 min, and the final pH increased as the BAG content increased. The ΔE of all experimental groups was significantly higher than that of the DW group (p < 0.05), but there were no significant differences between different BAG contents (p > 0.05). Gloss significantly decreased in all experimental groups compared to the DW group, and the increased BAG content had significantly affected the decrease in gloss (p < 0.05). There was no statistical difference in surface roughness (p > 0.05), but hardness increased significantly with BAG content after bleaching treatment (p < 0.05). CONCLUSIONS: HP containing 45S5 BAG showed efficacy in tooth whitening. Also, the pH value of the HP remained acidic near 3.5 for 20 min, while the HP containing the 45S5 BAG showed an increase in pH, which inhibited the demineralization of the enamel surface, and maintained the surface morphology. CLINICAL RELEVANCE: These novel materials are promising candidates to minimize enamel surface damage caused by HP during bleaching procedure in dental clinic.


Assuntos
Clareadores Dentários , Clareamento Dental , Animais , Bovinos , Esmalte Dentário , Dureza , Peróxido de Hidrogênio/química , Propriedades de Superfície , Clareamento Dental/métodos , Clareadores Dentários/química , Clareadores Dentários/farmacologia
15.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35267799

RESUMO

Biocompatibility is important for the 3D printing of resins used in medical devices and can be affected by photoinitiators, one of the key additives used in the 3D printing process. The choice of ingredients must be considered, as the toxicity varies depending on the photoinitiator, and unreacted photoinitiator may leach out of the polymerized resin. In this study, the use of ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPO-L) as a photoinitiator for the 3D printing of resin was considered for application in medical device production, where the cytotoxicity, colour stability, dimensional accuracy, degree of conversion, and mechanical/physical properties were evaluated. Along with TPO-L, two conventional photoinitiators, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide (BAPO) and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO), were considered. A total of 0.1 mol% of each photoinitiator was mixed with the resin matrix to prepare a resin mixture for 3D printing. The specimens were printed using a direct light processing (DLP) type 3D printer. The 3D-printed specimens were postprocessed and evaluated for cytotoxicity, colour stability, dimensional accuracy, degree of conversion, and mechanical properties in accordance with international standards and the methods described in previous studies. The TPO-L photoinitiator showed excellent biocompatibility and colour stability and possessed with an acceptable dimensional accuracy for use in the 3D printing of resins. Therefore, the TPO-L photoinitiator can be sufficiently used as a photoinitiator for dental 3D-printed resin.

16.
Bioact Mater ; 14: 219-233, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35310353

RESUMO

Polyalkenoate cement (PAC) is a promising material for regenerative hard tissue therapy. The ionically rich glass component of PAC encourages bioactive interaction via. the release of essential ions. However, PAC bioactivity is restricted owing to (i) structurally inherent cationic network formers and (ii) surface bacterial biofilm formation. These two factors cause a deficiency in ion release, further complicated by secondary infections and premature therapeutic failure. Here, a multivalent zwitterionic network modifier (mZM) is presented for upregulation of ionic exchange and bioactivity enhancement. By introducing a non-zero charged mZM into PACs, an increase in the proportion of non-bridging oxygen occurs. The network modification promotes ion channel formation, causing a multiple-fold increase in ion release and surface deposition of hydroxy-carbonate apatite (ca. 74%). Experiments ex vivo and animal models also demonstrate the efficient remineralization ability of the mZM. Furthermore, divalent cationic interaction results in bacterial biofilm reduction (ca. 68%) while also influencing a shift in the biofilm species composition, which favors commensal growth. Therefore, PAC modification with mZM offers a promising solution for upregulation of bioactivity, even aiding in customization by targeting site-specific regenerative therapy in future applications.

17.
Dent Mater J ; 41(2): 214-225, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34789624

RESUMO

The aim of this study was to evaluate the antimicrobial, stain and protein removal efficacy of denture or orthodontic appliance cleansers using in vitro test methods. Experimental cleansers were applied for experimental time in each evaluation method. To evaluate the microorganism removal efficacy, C. albicans and S. mutans removal rate was calculated from the specimen surface. Stain and protein removal rate was calculated using the spectrophotometer. Experimental cleansers significantly affected the microorganism removal rate for both C. albicans and S. mutans, as well as the stain and protein removal rates, at each experimental time (p<0.05). As the application time increased, the stain and protein removal rates of all experimental cleansers significantly increased (p<0.05). The present study provided in vitro evaluation methods to assess the efficacy of denture or orthodontic appliance cleansers. Also, manufacturers and researchers can predict clinical outcomes and ensure proper hygiene management of dentures or orthodontic appliances.


Assuntos
Candida albicans , Higienizadores de Dentadura , Higienizadores de Dentadura/farmacologia , Dentaduras , Aparelhos Ortodônticos , Espectrofotometria
18.
Clin Oral Investig ; 26(2): 2133-2142, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34591181

RESUMO

OBJECTIVES: The objectives of this study were to develop a novel bleaching material containing hydrated calcium silicate (hCS) particles and investigate the effects of hCS on the bleaching efficacy, microhardness, and surface morphology of bovine enamel. MATERIALS AND METHODS: To prepare the hCS particles, white Portland cement was mixed with distilled water and ground into a fine powder. The particles in various proportions were then mixed with 35% hydrogen peroxide solution (HP), while HP without hCS was used as a control (HP), and teeth whitening gel was used as a commercial control (CC). Following the thrice application of experimental and control solutions on the discolored bovine enamel surface for 15 min, color change (n = 10), microhardness (n = 10), and micromorphology (n = 2) of the enamel surface were analyzed. RESULTS: The Δ E* of the enamel surface treated with the experimental solution containing hCS was significantly higher than that of the CC, but there were no significant differences between the different hCS contents. The experimental solution containing hCS reduced the percentage of microhardness loss on the enamel surface, and the percentage of microhardness loss significantly decreased as the content of hCS increased (p < 0.05). The erosion pattern was only observed on enamel surfaces treated with HP and CC. CONCLUSIONS: This study suggests that HP containing hCS is effective in bleaching efficacy. In addition, hCS could also minimize the microhardness loss of tooth structure caused by HP and maintain enamel surface morphology. CLINICAL RELEVANCE: This novel bleaching material is promising for inhibiting demineralization and promoting the remineralization of teeth during bleaching treatment in dental clinics.


Assuntos
Clareadores Dentários , Clareamento Dental , Animais , Compostos de Cálcio , Bovinos , Esmalte Dentário , Dureza , Peróxido de Hidrogênio/farmacologia , Silicatos , Clareadores Dentários/farmacologia
19.
Materials (Basel) ; 14(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576544

RESUMO

Due to high demand but limited supply, there has been an increase in the need to replace autologous bone grafts with alternatives that fulfill osteogenic requirements. In this study, two different types of bone grafts were tested for their drug carrying abilities along with their osteogenic properties. Two different types of alendronate-loaded bone grafts, Bio-Oss (bovine bone graft) and InRoad (biphasic synthetic bone graft) were observed to see how different concentrations of alendronate would affect the sustained release to enhance osteogenesis. In this study, defected ovariectomize-induced osteoporotic rat calvarias were observed for 28 days with three different concentrations of alendronate (0 mg, 1 mg, 5 mg) for both Bio-Oss and InRoad. A higher concentration (5 mg) allowed for a more controlled and sustained release throughout the 28-day comparison to those of lower concentrations (0 mg, 1 mg). When comparing Bio-Oss and InRoad through histology and Micro-CT, InRoad showed higher enhancement in osteogenesis. Through this study, it was observed that alendronate not only brings out robust osteogenesis with InRoad bone grafts, but also enhances bone regeneration in an alendronate-concentration-dependent manner. The combination of higher concentration of alendronate and multiple porous bone graft containing internal micro-channel structure of InRoad resulted in higher osteogenesis with a sustained release of alendronate.

20.
Materials (Basel) ; 14(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443077

RESUMO

The aim of this study is to investigate the resistance of various fluoride-releasing restorative materials against the demineralization and remineralization of enamel surfaces, including those that have been recently introduced to the market. Three different fluoride-releasing restorative materials were considered: glass ionomer (FI), resin-modified glass ionomer (RL), and an alkasite restorative material (CN). The acid neutralization ability was investigated using pH measurement, and the concentrations of released fluoride and calcium ions were measured. Finally, the demineralization resistance and remineralization effects of enamel were observed using a microhardness tester and SEM. CN showed an initial substantial increase in pH followed by a steady increase, with values higher than those of the other groups (p < 0.05). All three groups released fluoride ions, and the CN group released more calcium ions than the other groups (p < 0.05). In the acid resistance test, from the microhardness and SEM images, the CN group showed effective resistance to demineralization. In the remineralization test, the microhardness results showed that the FI and CN groups recovered the microhardness from the values of the demineralized enamel surface (p < 0.05). This was confirmed by the SEM images from remineralization tests; the CN group showed a recovered demineralized surface when immersed in artificial saliva for 7 days. In conclusion, alkasite restorative material can be an effective material when used in cariogenic environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA