Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 193: 115254, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37437475

RESUMO

On August 13th, 2021, the Fukutoku-Okanoba, a submarine volcano in the Northwest Pacific Ocean, erupted. Satellites detected various pumice rafts that had drifted westward to reach southern Japan over two months. To cope with the potential danger from pumice rafts, predicting their trajectories is crucial. Using a Lagrangian particle tracking model, the trajectories of the rafts were investigated. The model results showed strong sensitivity to the windage coefficient of pumice rafts, which is uncertain and could cause significant errors. An optimal windage coefficient was estimated by comparing the model results with satellite images using a skill score based on the distance between simulated particles and the nearest observed rafts divided by the travel distance of the particles. The optimal windage coefficients ranged between 2 and 3 % and produced pathways comparable to the observations from satellites. The simulation results showed that the pumice rafts moved from Fukutoku-Okanoba toward the Ryukyu Islands for approximately two months prior to being pushed by the north-easterly wind toward Taiwan against the Kuroshio. The methods presented here may become a valuable tool in managing coastal hazards due to diverse marine debris.


Assuntos
Microdomínios da Membrana , Silicatos , Simulação por Computador , Oceano Pacífico
2.
iScience ; 25(11): 105367, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36325050

RESUMO

Although interest in recycling carbon fibers is rapidly growing, practical applications of recycled carbon fibers (rCFs) are limited owing to their poor wettability and adhesion. Surface modification of CFs was achieved through intense pulsed light (IPL) irradiation, which functionalizes surface of rCFs. Surface energy, chemical composition, morphology, and interfacial shear strength (IFSS) of rCFs before and after IPL irradiation were investigated. The rCF IPL-irradiated at 1,200 V improved both polar and dispersive components of surface energy, and the IFSS significantly increased by 2.93 times in relation to that of the pristine rCF and reached 95% of that of high-grade commercial CFs. We proposed a mechanism by which oxygen functional groups on the rCF surface enhance the molecular bonding force with HDPE, and the model was validated from molecular dynamics simulations. IPL irradiation is a rapid and effective surface treatment method that can be employed for the manufacture of rCF-reinforced composites.

3.
Biology (Basel) ; 10(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205090

RESUMO

LARC patients were sorted according to their radio-responsiveness and patient-derived organoids were established from the respective cancer tissues. Expression profiles for each group were obtained using RNA-seq. Biological and bioinformatic analysis approaches were used in deciphering genes and pathways that participate in the radio-resistance of LARC. Thirty candidate genes encoding proteins involved in radio-responsiveness-related pathways, including the immune system, DNA repair and cell-cycle control, were identified. Interestingly, one of the candidate genes, cathepsin E (CTSE), exhibited differential methylation at the promoter region that was inversely correlated with the radio-resistance of patient-derived organoids, suggesting that methylation status could contribute to radio-responsiveness. On the basis of these results, we plan to pursue development of a gene chip for diagnosing the radio-responsiveness of LARC patients, with the hope that our efforts will ultimately improve the prognosis of LARC patients.

4.
J Nanosci Nanotechnol ; 21(5): 3010-3015, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653473

RESUMO

Research on smart windows is accelerating with a global trend that emphasizes efficient energy use. VO2 is representativematerial for thermochromic smart windows that can reflect part of sunlight depending on the external environment. We attempted to produce thermochromic thin films by ultrasonic spray coating of VO2 nano inks. Ultrasonic spray coating is a technique that is widely used to form thin and uniform thin films, but optimization has been required due to problems such as surface roughness and coffee-ring effect. In this study, we investigated the effects of ultrasonic spray coating process conditions on the quality of VO2 thin films, and attempted to optimize condition.

5.
Polymers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35012171

RESUMO

Na3V2(PO4)3 is regarded as one of the promising cathode materials for next-generation sodium ion batteries, but its undesirable electrochemical performances due to inherently low electrical conductivity have limited its direct use for applications. Motivated by the limit, this study employed a porous carbon network to obtain a porous carbon network-Na3V2(PO4)3 composite by using poly(vinylalcohol) assised sol-gel method. Compared with the typical carbon-coating approach, the formation of a porous carbon network ensured short ion diffusion distances, percolating electrolytes by distributing nanosized Na3V2(PO4)3 particles in the porous carbon network and suppressing the particle aggregation. As a result, the porous carbon network-Na3V2(PO4)3 composite exhibited improved electrochemical performances, i.e., a higher specific discharge capacity (~110 mAh g-1 at 0.1 C), outstanding kinetic properties (~68 mAh g-1 at 50 C), and stable cyclic stability (capacity retention of 99% over 100 cycles at 1 C).

6.
Mar Pollut Bull ; 161(Pt A): 111828, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33190868

RESUMO

Flood debris associated with Typhoon Lionrock from the Tumen River at the border between Russia and North Korea was traced using ocean color and a Lagrangian particle-tracking model. As debris is transported along with discharged water during floods, a means of tracing floodwater should also allow any associated debris to be tracked. By analyzing the anomalous distribution of colored dissolved organic matter (CDOM) and total suspended sediments (TSS) from the Geostationary Ocean Color Imager (GOCI), the southward movement of the floodwater was tracked along the eastern coast of the Korean Peninsula. This movement was driven by the North Korean Cold Current and was consistent with model results. The similarity between the satellite-derived and modeled datasets shows that CDOM and TSS can be used to track flood-derived debris for several hundreds of kilometers and locate hotspots of debris accumulation.


Assuntos
Inundações , Rios , Cor , Oceanos e Mares , Federação Russa
7.
ACS Appl Mater Interfaces ; 12(5): 6516-6524, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31913010

RESUMO

A reversibly cross-linkable and transparent polymer featuring stretchability and thermal healability is prepared by introducing Diels-Alder (DA)-reactive moieties into polydimethylsiloxane (PDMS), namely, a healable PDMS (h-PDMS). Inspired by the fact that retro-DA reactions occur even at low temperatures (albeit at a low rate), we maximize the effectiveness of small reactant products, demonstrating that self-healing and self-integration realized by 1-3 min exposure of cured h-PDMS to methyl ethyl ketone (MEK) vapor is more efficient than that achieved by direct sample heating at high temperatures. This technology is first used to uniformly transfer Ag nanowires (Ag NWs) formed on a temporary substrate to the h-PDMS surface, and further MEK vapor treatment allows the transferred NWs to be impregnated below the h-PDMS surface to afford an in-plane strain sensor. Most importantly, the developed method is used to perfectly integrate two identical Ag NW/h-PDMS films and thus place NWs on a neutral plane. Consequently, because of the unique structure in which a percolated network of AgNWs is formed on the interface where the two identical h-PDMS films are chemically integrated, the fabricated sensor is transparent, self-healable, stretchable, and insensitive to bending but sensitively responds to in-plane strain induced by lateral deformation.

8.
Sci Rep ; 9(1): 18391, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804507

RESUMO

This paper presents a wide-angle scanning phased array antenna using high gain pattern reconfigurable antenna (PRA) elements. Using PRA elements is an attractive solution for wide-angle scanning phased array antennas because the scanning range can be divided into several subspaces. To achieve the desired scanning performance, some characteristics of the PRA element such as the number of switching modes, tilt angle, and maximum half-power beamwidth (HPBW) are required. We analyzed the required characteristics of the PRA element according to the target scanning range and element spacing, and presented a PRA element design guideline for phased array antennas. In accordance with the guideline, the scanning range was set as ±70° and a high gain PRA element with three reconfigurable patterns was used to compose an 8x1 array antenna with 0.9 λ0 spacing. After analyzing whether the active element patterns meet the guideline, the array antenna was fabricated and measured to demonstrate the scanning performance. The fabricated array can scan its beam from -70° to 70° by dividing the scanning range into three subspaces. It shows that even if the array antenna has large element spacing, the desired scanning performance can be obtained using the elements designed under the guideline.

9.
Nano Lett ; 16(3): 1537-45, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26816114

RESUMO

Fluidic resonators with integrated microchannels (hollow resonators) are attractive for mass, density, and volume measurements of single micro/nanoparticles and cells, yet their widespread use is limited by the complexity of their fabrication. Here we report a simple and cost-effective approach for fabricating hollow microtube resonators. A prestructured silicon wafer is annealed at high temperature under a controlled atmosphere to form self-assembled buried cavities. The interiors of these cavities are oxidized to produce thin oxide tubes, following which the surrounding silicon material is selectively etched away to suspend the oxide tubes. This simple three-step process easily produces hollow microtube resonators. We report another innovation in the capping glass wafer where we integrate fluidic access channels and getter materials along with residual gas suction channels. Combined together, only five photolithographic steps and one bonding step are required to fabricate vacuum-packaged hollow microtube resonators that exhibit quality factors as high as ∼ 13,000. We take one step further to explore additionally attractive features including the ability to tune the device responsivity, changing the resonator material, and scaling down the resonator size. The resonator wall thickness of ∼ 120 nm and the channel hydraulic diameter of ∼ 60 nm are demonstrated solely by conventional microfabrication approaches. The unique characteristics of this new fabrication process facilitate the widespread use of hollow microtube resonators, their translation between diverse research fields, and the production of commercially viable devices.

10.
J Nanosci Nanotechnol ; 15(3): 2333-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26413662

RESUMO

Microwave sintering is a promising method for low-temperature processes, as it provides advantages such as uniform, fast, and volumetric heating. In this study, we investigated the electrical characteristics of inkjet-printed silver (Ag) circuits sintered by microwaves. The microstructural evolutions of inkjet-printed Ag circuits sintered at various temperatures for different durations were observed with a field emission scanning electron microscope. The electrical properties of the inkjet-printed Ag circuits were analysed by electrical resistivity measurements and radio frequency properties including scattering-parameters in the frequency range of 20 MHz to 20 GHz. The experimental results show that the signal losses of the Ag circuits sintered by microwave heating were lower than those sintered by conventional heating as microwave heating led to granular films which were nearly fully sintered without pores on the surfaces. When the inkjet-printed Ag circuits were sintered by microwaves at 300 °C for 4 min, their electrical resistivity was 5.1 µΩ cm, which is 3.2 times larger than that of bulk Ag. Furthermore, microwave sintering at 150 °C for 4 min achieved much lower signal losses (1.1 dB at 20 GHz) than conventional sintering under the same conditions.


Assuntos
Temperatura Alta , Tinta , Micro-Ondas , Nanoestruturas , Nanotecnologia/métodos , Prata/química , Impressão , Propriedades de Superfície
11.
J Nanosci Nanotechnol ; 14(11): 8808-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25958608

RESUMO

This paper focuses on the effect of Ag nanowire addition into a commercial Ag nanopaste and the printability evaluation of the mixed paste by the gravure offset printing methodology. Ag nanowires were synthesized by a modified polyol method, and a small amount of them was added into a commercial metallic paste based on Ag nanoparticles of 50 nm in diameter. Two annealing temperatures were selected for comparison, and electrical conductivity was measured by four point probe method. As a result, the hybrid mixture could be printed by the gravure offset method for patterning fine lines up to 15 µm width with sharp edges and scarce spreading. The addition of the Ag nanowires was significantly efficient for enhancement of electrical conductivity of the printed lines annealed at a low temperature (150 degrees C), while the effect was somewhat diluted in case of high temperature annealing (200 degrees C). The experimental results were discussed with the conduction mechanism in the printed conductive circuits with a schematic description of the electron flows in the printed lines.

12.
J Nanosci Nanotechnol ; 14(12): 8915-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25970981

RESUMO

Since direct printing technology has developed intensively, low-cost fabrication and reliability have become critical challenges for mass production of printed electronic devices. The silver/copper (Ag/Cu) nanopaste was manufactured by Ag nanopaste mixed with different proportions of Cu nanoparticles ranging from 0 to 5 vol.% in order to investigate the influences of Cu content on the electrical properties and electrochemical migration (ECM) characteristics. The patterns were constructed on a glass wafer via screen printing with the Ag/Cu nanopaste. They were then annealed through debinding for 30 min in air followed by sintering for 30 min in a hydrogen atmosphere at various temperatures (150, 200, 250, and 300 degrees C). The electrical resistivity of printed patterns that were sintered at 150 degrees C grew with increases in the percentage of Cu content in the Ag/Cu nanopaste, while printed patterns that were sintered at 300 degrees C show similar electrical resistivity values of around 2-3 µΩ cm regardless of Cu content. The ECM characteristics of the printed patterns were evaluated by performing a water drop test. The printed patterns that were sintered at higher temperatures showed longer ECM times. At 300 degrees C, the ECM time was considerably lengthened when the Cu content was over 2 vol.%, and the 5 vol.% Cu pattern showed the longest ECM time of 305 s, which was around 1.65 times that of the Ag pattern.

13.
J Nanosci Nanotechnol ; 14(12): 9448-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971081

RESUMO

We investigated the adhesion characteristics of screen-printed silver (Ag) tracks on polyimide (PI) treated by atmospheric-pressure plasma (APP). Oxygen plasma was applied to the PI surface, and the APP-treated surface was exposed to air for various periods of time in order to evaluate the sustainability of the APP treatment. The adhesion of the Ag/PI interface was measured using a roll-type 90 degrees peel test. The peel strength was dramatically increased by the APP treatment, but the strength decreased by around 62.7% when the APP-treated PI surface was exposed to air for 2 h. The peeled PI surface showed ductile fracture immediately after the APP treatment; however, after 2 h of exposure to air, the fracture behavior returned what was observed before the APP treatment. To analyze the deterioration of adhesion, the interface between the printed Ag track and the APP-treated PI was investigated physically and chemically. The surface morphology became rougher after the APP treatment, but the roughness slightly decreased after being exposed to air for 2 h. X-ray photoelectron spectroscopy (XPS) was used to investigate the chemical bonding of the printed Ag and the PI interface. XPS analyses show that the concentration of oxygen-containing groups decreased as the exposure time to air increased.

14.
J Nanosci Nanotechnol ; 14(12): 9493-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971089

RESUMO

Circuit pitch has decreased due to the demand for high-performance and multi-functional electronic devices. This trend has increased the risk of short-circuit failures by electrochemical migration (ECM), which is the transportation of ions between the cathode and anode under electrical potential. While direct printing has emerged as a promising technology in terms of manufacturing cost and environmental issues, there are few studies about ECM in directly printed copper (Cu) nanopaste. We prepared screen-printed comb-type Cu patterns on a Si wafer with various sintering temperatures (200, 250, 300, 350 degrees C). ECM characteristics of the printed Cu were determined by water drop testing under various electrical potentials (3, 6, 9 V). The microstructures and the roughness profiles of the pattern surfaces were identified with field emission scanning electron microscopy (FE-SEM) and a three-dimensional surface profiler, respectively. While the electrical potential increased from 3 V to 9 V, the time to failure (ECM time) required for dendrites to grow from the cathode to the adjacent anode decreased by 63.0%. On the other hand, the ECM time increased by 205.1% when the sintering temperature increased from 200 degrees C to 350 degrees C. FE-SEM micrographs and energy-dispersive X-ray spectroscopy analysis of dendrites showed a mixture of trunk and lace types, which were mainly composed of Cu.

15.
J Nanosci Nanotechnol ; 13(11): 7620-4, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245303

RESUMO

Direct printing such as inkjet, gravure, and screen printing is an attractive approach for achieving low-cost circuitry in the printed circuit board industry. One of the challenges for direct printing technology, however, is the poor resistance to electrochemical migration (ECM), especially for silver (Ag) which has been widely used in printed electronics. We demonstrate improved resistance to Ag electrochemical migration by adding palladium (Pd) nanoparticles to the Ag nanopaste. Conductive comb-type patterns were fabricated on a bismaleimide-triazine substrate via screen printing. Their ECM characteristics were assessed by water drop test with deionized water. These results showed that the ECM time required for dendritic growth from cathode to anode to cause short-circuit failure was affected by the Pd content and applied voltages: the ECM time of Ag-15wt.% Pd nanopaste was nearly threefold that of Ag nanopaste, and the ECM time decreased by 94.22%, on average, while the applied voltage increased from 3 V to 9 V.


Assuntos
Cristalização/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Paládio/química , Prata/química , Impedância Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Pomadas/química , Tamanho da Partícula , Propriedades de Superfície
16.
J Nanosci Nanotechnol ; 12(7): 5769-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966651

RESUMO

Printable and flexible electronics are increasingly being used in numerous applications that are miniaturized, multi-functional and lightweight. Simultaneously, reliability issues of the printed and flexible electronic devices are getting more attention. The adhesion of screen-printed silver (Ag) tracks on a polyimide (PI) film was investigated after two kinds of the environmental reliability test: a constant-temperature storage test, and a steady-state temperature and humidity storage test. Atmospheric-pressure plasma (APP) was adopted on the PI film surface to improve the poor adhesion derived from the inherent hydrophobicity. The Ag tracks constructed via screen printing were sintered at 250 degrees C for 30 min in air using a box-type muffle furnace. Some samples were exposed under 85 degrees C and 85% relative humidity (RH) for various durations (24, 72, 168 and 500 h), and others were aged at 85 degrees C with same durations to compare the influence of moisture on the adhesion. The adhesion of the screen-printed Ag tracks was evaluated by a roll-type 90 degrees peel test. The peel strength of the screen-printed Ag tracks decreased by 76.74% and 69.88% after 500 h run of the 85 degrees C/85% RH test, and the aging test, respectively. The weakest adhesion was 4.98 gf/mm after the 500 h run of the 85 degrees C/85% RH test. To demonstrate these experimental results, the microstructural evolution and chemical bonding states of the interfacial surfaces were characterized using a field emission scanning electron microscope (FE-SEM), and X-ray photoelectron spectroscope (XPS), respectively.

17.
J Nanosci Nanotechnol ; 12(4): 3219-23, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849092

RESUMO

We evaluated the electrical reliability of screen-printed silver (Ag) patterns sintered at various temperatures under variable bias voltages. Comb-type patterns were screen-printed onto a flame resistance-4 substrate using a commercial Ag nanopaste (24 nm in diameter, 73 wt% of Ag nanoparticles). The printed patterns were then sintered for 30 min in air at various temperatures ranging from 100 degrees C to 200 degrees C. The microstructures and thickness profiles of the sintered conductive patterns were identified with a field emission scanning electron microscope and a 3-D surface profiler, respectively. In this study, the phenomenon of electrochemical migration was investigated with a water drop test with deionized water. These results showed that the time required by dendrites to bridge from a cathode to an anode was affected by the sintering temperature and applied voltage; when the sintering temperature was 200 degrees C, the time to achieve a short circuit was nearly four times that of the sample sintered at 100 degrees C, and while the applied voltage increased from 3 V to 9 V, the time to reach a short circuit decreased, on average, by 11%.

18.
Nanoscale Res Lett ; 7(1): 49, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22222145

RESUMO

The microstructural evolution and the adhesion of an Ag nanopaste screen-printed on a silicon substrate were investigated as a function of sintering temperature. Through the two thermal analysis methods, such as differential scanning calorimeter and thermo-gravimetric analysis, the sintering conditions were defined where the temperature was raised from 150°C to 300°C, all with a fixed sintering time of 30 min. The microstructure and the volume of the printed Ag nanopaste were observed using a field emission scanning electron microscope and a 3-D surface profiler, respectively. The apparent density of the printed Ag nanopaste was calculated depending on the sintering conditions, and the adhesion was evaluated by a scratch test. As the sintering temperature increased from 150°C to 300°C, the apparent density and the adhesion increased by 22.7% and 43%, respectively. It is confirmed that the printed Ag nanopaste sintered at higher temperatures showed higher apparent density in the microstructural evolution and void aggregation, resulting in the lower electrical resistivity and various scratched fractures.

19.
J Nanosci Nanotechnol ; 11(7): 5806-11, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121611

RESUMO

The flexibility of screen-printed silver (Ag) circuits on a polyimide (PI) substrate was investigated under a high temperature and relative humidity (RH). The conductive circuits were constructed on a PI film with a commercial Ag nanopaste via screen printing. The printed patterns were sintered at 200 degrees C for 30 min in a box-type furnace, after which they were placed in a chamber at 85 degrees C/85% RH for various durations: 100, 300, 500, and 1000 h. The Institute for Interconnecting and Packaging Electronic Circuits (IPC) flexural resistance endurance test was conducted to measure the flexibility of the conductive circuits, and the flexibility of the printed patterns was evaluated by detecting the variation of the electrical resistance. The flexibility of the screen-printed conductive circuits decreased as the duration of the 85 degrees C/85% RH test increased. After the 1000 h run of the 85 degrees C/85% RH test, the flexibility of the printed circuits was almost halved compared to that after the 100 h test. To demonstrate the decreased flexibility, the microstructural evolution and partial volume were investigated with a field emission scanning electron microscope (FE-SEM) and a 3D surface profiler, respectively.

20.
J Nanosci Nanotechnol ; 11(7): 5915-20, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121631

RESUMO

We investigated the feasibility of a printing technology for Ag circuit formation on a FR4 substrate. A conductive paste containing Ag nanoparticles (73 wt%) of 20-50 nm diameter was screen printed on an FR4 substrate and sintered under a sintering temperature ranging from 100 degrees C to 200 degrees C for 30 min. We carried out the thermal analysis of the Ag nanopaste to confirm the suitability of the set-up conditions. To investigate the sintering degree with various temperatures, fractured cross-sections were observed by field emission scanning electron microscopy (FESEM). For electrical characterization of the printed Ag circuit, a four-point probe method was used to measure the direct current (DC) resistivity, while a network analyzer and Cascade's probe system in the frequency range from 10 MHz to 20 GHz were used to measure the scattering parameters (S-parameter) of the sintered Ag conducting patterns. The resistivity under the application of a DC signal decreased as the temperature increased. The measured S-parameters indicated that the electrical losses decreased as the sintering temperature increased due to the interparticle neck formation after heat treatment at high temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA