Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38675118

RESUMO

Enzalutamide (ENZ), marketed under the brand name Xtandi® as a soft capsule, is an androgen receptor signaling inhibitor drug actively used in clinical settings for treating prostate cancer. However, ENZ's low solubility and bioavailability significantly hinder the achievement of optimal therapeutic outcomes. In previous studies, a liquid self-nanoemulsifying drug delivery system (L-SNEDDS) containing ENZ was developed among various solubilization technologies. However, powder formulations that included colloidal silica rapidly formed crystal nuclei in aqueous solutions, leading to a significant decrease in dissolution. Consequently, this study evaluated the efficacy of adding a polymer as a recrystallization inhibitor to a solid SNEDDS (S-SNEDDS) to maintain the drug in a stable, amorphous state in aqueous environments. Polymers were selected based on solubility tests, and the S-SNEDDS formulation was successfully produced via spray drying. The optimized S-SNEDDS formulation demonstrated through X-ray diffraction and differential scanning calorimetry data that it significantly reduced drug crystallinity and enhanced its dissolution rate in simulated gastric and intestinal fluid conditions. In an in vivo study, the bioavailability of orally administered formulations was increased compared to the free drug. Our results highlight the effectiveness of solid-SNEDDS formulations in enhancing the bioavailability of ENZ and outline the potential translational directions for oral drug development.

2.
Sensors (Basel) ; 24(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339745

RESUMO

Location fingerprinting using Received Signal Strength Indicators (RSSIs) has become a popular technique for indoor localization due to its use of existing Wi-Fi infrastructure and Wi-Fi-enabled devices. Artificial intelligence/machine learning techniques such as Deep Neural Networks (DNNs) have been adopted to make location fingerprinting more accurate and reliable for large-scale indoor localization applications. However, the success of DNNs for indoor localization depends on the availability of a large amount of pre-processed and labeled data for training, the collection of which could be time-consuming in large-scale indoor environments and even challenging during a pandemic situation like COVID-19. To address these issues in data collection, we investigate multi-dimensional RSSI data augmentation based on the Multi-Output Gaussian Process (MOGP), which, unlike the Single-Output Gaussian Process (SOGP), can exploit the correlation among the RSSIs from multiple access points in a single floor, neighboring floors, or a single building by collectively processing them. The feasibility of MOGP-based multi-dimensional RSSI data augmentation is demonstrated through experiments using the hierarchical indoor localization model based on a Recurrent Neural Network (RNN)-i.e., one of the state-of-the-art multi-building and multi-floor localization models-and the publicly available UJIIndoorLoc multi-building and multi-floor indoor localization database. The RNN model trained with the UJIIndoorLoc database augmented with the augmentation mode of "by a single building", where an MOGP model is fitted based on the entire RSSI data of a building, outperforms the other two augmentation modes and results in the three-dimensional localization error of 8.42 m.

3.
Food Sci Biotechnol ; 33(4): 855-876, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371683

RESUMO

This study identified the aroma profile of salmon by-product for high utilization of by-products, including hydrolysates of head, frame, and skin were treated with reducing sugars and thermal processing. Electronic nose (E-nose) and gas chromatography-mass spectrometry (GC-MS) coupled with gas chromatography-olfactometry (GC-O) were used to analyzed the aroma profile. A total of 140 and 90 volatile compounds were detected through E-nose and GC-MS respectively, and the main volatile compounds were aldehydes. A total of 23 odor active compounds were recognized using GC-O, and 3-methyl-butanal, heptanal, benzaldehyde, octanal, furfural, and methoxy-phenyl-oxime were identified as the aroma of salmon. Using multivariate analysis, the pattern between the pretreated samples and aroma profiles was confirmed, and there were clear separations among the samples. The results of this study provide the aroma profile of salmon by-products and are expected salmon by-products to be used as a potential food source.

4.
Molecules ; 29(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38338437

RESUMO

This study aimed to isolate the proteolytic fraction from the silkworm thorn fruit (Cudrania tricuspidata) through ethanol precipitation at different ratios, and to determine its proteolytic activity and optimal activity conditions. Furthermore, the hydrolysis characteristics and antioxidant activity of soy protein isolate (SPI) and whey protein concentrate (WPC) hydrolyzates obtained through the enzymatic hydrolysis of freeze-dried silkworm thorn fruit powder (SF) were evaluated. For isolation and partial purification of proteolytic fraction, the water-solubilized fraction of the silkworm thorn fruit was purified through ethanol precipitation at four different ratios of 1:1, 1:2, 1:4, and 1:6 (v/v). The protein recovery rate, caseinolytic activity, protein pattern, and optimal activity (pH, temperature, and inhibitors) of fractional ethanol precipitate obtained from the silkworm thorn fruit (ESF) were evaluated. The proteolytic fraction obtained from silkworm thorn fruit exhibited a major protein band around 65-70 kDa and showed the highest proteolytic activity at a 1:4 ratio of ethanol precipitation (p < 0.05). The optimal activity of the measured enzyme fraction was determined to be at pH 9.0 and 50 °C, and the proteolytic activity of ESF was almost inhibited by phenyl methyl sulphonyl fluoride (PMSF, 2 mM), a serine protease inhibitor. Compared to Alcalase and papain, extensively used as commercial enzymes, the silkworm thorn fruit powder was less effective in hydrolyzing SPI and WPC. Nevertheless, SPI and WPC hydrolyzates mediated with silkworm thorn fruit powder showed even better antioxidant activities than those mediated with Alcalase and papain. Thus, our results show the potential application of silkworm thorn fruit as a novel source of plant protease for producing human-grade protein hydrolyzates.


Assuntos
Bombyx , Maclura , Animais , Humanos , Hidrólise , Bombyx/metabolismo , Papaína/metabolismo , Frutas/metabolismo , Pós , Peptídeo Hidrolases/metabolismo , Proteínas do Soro do Leite , Proteínas de Soja , Subtilisinas/metabolismo , Etanol
5.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256270

RESUMO

The purpose of this study is to develop and evaluate a self-nanoemulsifying drug delivery system (SNEDDS) to improve the oral absorption of poorly water-soluble enzalutamide (ENZ). Considering the rapid recrystallization of the drug, based on solubility and crystallization tests in various oils, surfactants and co-surfactants, Labrafac PG 10%, Solutol HS15 80%, and Transcutol P 10%, which showed the most stable particle size and polydispersity index (PDI) without drug precipitation, were selected as the optimal SNEDDS formulation. The optimized SNEDDS formulation showed excellent dissolution profiles for all the drugs released at 10 min of dissolution due to the increased surface area with a small particle size of approximately 16 nm. Additionally, it was confirmed to be stable without significant differences in physical and chemical properties for 6 months under accelerated conditions (40 ± 2 °C, 75 ± 5% RH) and stressed conditions (60 ± 2 °C). Associated with the high dissolutions of ENZ, pharmacokinetic parameters were also greatly improved. Specifically, the AUC was 1.9 times higher and the Cmax was 1.8 times higher than those of commercial products (Xtandi® soft capsule), resulting in improved oral absorption. Taken together with the results mentioned above, the SNEDDS could be an effective tool as a formulation for ENZ and other similar drugs.


Assuntos
Benzamidas , Sistemas de Liberação de Medicamentos , Feniltioidantoína , Nitrilas , Tensoativos
6.
Molecules ; 28(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513381

RESUMO

Pet owners think of their animals as part of their family, which further promotes the growth of the pet food market, encouraging pet owners to select nutritious, palatable, and high-quality foods for pets. Therefore, the evaluation of taste and volatile compounds in pet foods is essential to improve palatability. In this study, the sensory characteristics of taste and odor compounds in 10 commercially available dry dog foods were investigated using electronic tongue (E-tongue), electronic nose (E-nose), gas chromatography-mass spectrometry (GC-MS), and gas chromatography-olfactometry (GC-O). Dry dog foods were separated based on the sensory properties of taste and volatile compounds through the multivariate analysis of integrated results of the E-tongue and E-nose. A total of 67 odor active compounds were detected through GC-MS and GC-O, and octanal, nonanal, 2-pentyl furan, heptanal, and benzaldehyde were identified as key odor compounds which may have positive effects on food intake. The multivariate analysis was used to classify samples based on key odor compounds. Volatile compounds responsible for aroma properties of samples were evaluated using GC-O and multivariate analysis in this present study for the first time. These results are expected to provide fundamental data for sensory evaluation in producing new dog foods with improved palatability.


Assuntos
Olfato , Compostos Orgânicos Voláteis , Cães , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ração Animal/análise , Paladar , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Olfatometria/métodos , Eletrônica , Nariz Eletrônico
7.
Sensors (Basel) ; 22(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890961

RESUMO

In a wireless sensor network (WSN), reducing the energy consumption of battery-powered sensor nodes is key to extending their operating duration before battery replacement is required. Message bundling can save on the energy consumption of sensor nodes by reducing the number of message transmissions. However, bundling a large number of messages could increase not only the end-to-end delays and message transmission intervals, but also the packet error rate (PER). End-to-end delays are critical in delay-sensitive applications, such as factory monitoring and disaster prevention. Message transmission intervals affect time synchronization accuracy when bundling includes synchronization messages, while an increased PER results in more message retransmissions and, thereby, consumes more energy. To address these issues, this paper proposes an optimal message bundling scheme based on an objective function for the total energy consumption of a WSN, which also takes into account the effects of packet retransmissions and, thereby, strikes the optimal balance between the number of bundled messages and the number of retransmissions given a link quality. The proposed optimal bundling is formulated as an integer nonlinear programming problem and solved using a self-adaptive global-best harmony search (SGHS) algorithm. The experimental results, based on the Cooja emulator of Contiki-NG, demonstrate that the proposed optimal bundling scheme saves up to 51.8% and 8.8% of the total energy consumption with respect to the baseline of no bundling and the state-of-the-art integer linear programming model, respectively.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos , Fontes de Energia Elétrica , Fenômenos Físicos
8.
Pharmaceutics ; 13(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467157

RESUMO

Low aqueous solubility and poor bioavailability are major concerns in the development of oral solid-dosage drug forms. In this study, we fabricated surface-attached solid dispersion (SASD) to enhance the solubility, bioavailability, and photostability of methotrexate (MTX), a highly lipophilic and photo-unstable drug. Several MTX-loaded SASD formulations were developed for spray-drying using water as the solvent, and were investigated for their aqueous solubility and dissolution kinetics. An optimized ternary SASD formulation composed of MTX/ sodium carboxymethyl cellulose (Na-CMC)/sodium lauryl sulfate (SLS) at 3/0.5/0.5 (w/w) had 31.78-fold and 1.88-fold higher solubility and dissolution, respectively, than MTX powder. For SASD, the in vivo pharmacokinetic parameters AUC and Cmax were 2.90- and 3.41-fold higher, respectively, than for the MTX powder. Solid-state characterizations by differential scanning calorimetry and X-ray diffraction revealed that MTX exists in its crystalline state within the spray-dried SASD. The MTX-loaded SASD formulation showed few physical changes with photostability testing. Overall, the results indicate that the spray-dried MTX-loaded SASD formulation without organic solvents enhances the solubility and oral bioavailability of MTX without a significant deterioration of its photochemical stability.

9.
FASEB J ; 34(11): 14407-14423, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33000885

RESUMO

Decidualization of the endometrial stroma is an essential differentiation process for embryo implantation and maintenance of pregnancy. We previously reported that protein phosphatase 2A (PP2A) acts as a key mediator during cAMP-induced decidualization of human endometrial stromal cells (hESCs). However, the mechanism underlying its activation has remained obscure in hESCs. In the present study, we aimed to reveal the mechanism that induces the nitration of PP2A catalytic subunit (PP2Ac) during cAMP-induced decidualization of hESCs. First, cAMP-induced PP2Ac nitration was significantly repressed using L-NAME, an inhibitor of nitric oxide synthase (NOS). Among several NOS isoforms, only inducible NOS (iNOS) was highly expressed in hESCs, indicating that iNOS directly induces the nitration of PP2Ac. Second, cAMP-induced iNOS expression and PP2Ac nitration were decreased by treatment with TSA, an inhibitor of histone deacetylase 5 (HDAC5). cAMP-induced phosphorylation of CaMKII and HDAC5 was suppressed by treatment with U73122 (an inhibitor of phospholipase C) or transfection of PLCε siRNA. Finally, small G protein Rap1 and its guanine nucleotide exchange factor Epac1 were found to be involved in cAMP-induced PP2A activation. Taken together, our results suggest that PP2Ac nitration during cAMP-induced decidualization of hESCs is induced through the Epac1-Rap1-PLCε-CaMKII-HDAC5-iNOS signaling pathway.


Assuntos
Decídua/metabolismo , Óxido Nítrico/metabolismo , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Adulto , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Células Cultivadas , Decídua/citologia , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Histona Desacetilases/metabolismo , Humanos , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Complexo Shelterina , Células Estromais/citologia , Células Estromais/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
10.
Sensors (Basel) ; 19(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540497

RESUMO

Energy efficiency and end-to-end delay are two of the major requirements for the monitoring and detection applications based on resource-constrained wireless sensor networks (WSNs). As new advanced technologies for accurate monitoring and detection-such as device-free wireless sensing schemes for human activity and gesture recognition-have been developed, time synchronization accuracy becomes an important requirement for those WSN applications too. Message bundling is considered one of the effective methods to reduce the energy consumption for message transmissions in WSNs, but bundling more messages increases the transmission interval of bundled messages and thereby their end-to-end delays; the end-to-end delays need to be maintained within a certain value for time-sensitive applications like factory monitoring and disaster prevention, while the message transmission interval affects time synchronization accuracy when the bundling includes synchronization messages as well. Taking as an example a novel WSN time synchronization scheme recently proposed for energy efficiency, we investigate an optimal approach for message bundling to reduce the number of message transmissions while maintaining the user-defined requirements on end-to-end delay and time synchronization accuracy. Formulating the optimal message bundling problem as integer linear programming, we compute a set of optimal bundling numbers for the sensor nodes to constrain their link-level delays, thereby achieving and maintaining the required end-to-end delay and synchronization accuracy. Extensive experimental results based on a real WSN testbed using TelosB sensor nodes demonstrate that the proposed optimal bundling could reduce the number of message transmissions about 70% while simultaneously maintaining the required end-to-end delay and time synchronization accuracy.

11.
Int J Nanomedicine ; 14: 4949-4960, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308665

RESUMO

Purpose: The objective of this study was to exploit a novel methotrexate (MTX)-loaded solid self-microemulsifying drug delivery system (SMEDDS) with enhanced bioavailability and photostability. Materials and methods: The optimized liquid SMEDDS was composed of castor oil, Tween® 80, and Plurol® diisostearique at a voluminous ratio of 27:63:10. The solid SMEDDS was formulated by spray drying liquid SMEDDS with the solid carrier (calcium silicate). Particle size analyzer, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared (FTIR) spectroscopy experiments characterized the physiochemical properties of the MTX-loaded solid SMEDDS. These properties include a z-average diameter of emulsion around 127 nm and the amorphous form of the solid SMEDDS. Furthermore, their solubility, dissolution, and pharmacokinetics in Sprague-Dawley rats were analyzed in comparison with the MTX powder. Results: The final dissolution rate and required time for complete release of solid SMEDDS were 1.9-fold higher and 10 min shorter, respectively, than those of MTX powder. Pharmacokinetic analysis demonstrated 2.04- and 3.41-fold increments in AUC and Cmax, respectively in comparison to MTX powder. The AUC and Cmax were significantly increased in solid SMEDDS. Finally, the photostability studies revealed the substantially enhanced photostability of the MTX-loaded SMEDDS under the forced degradation and confirmatory conditions. Conclusion: This solid SMEDDS formulation could be an outstanding candidate for improving the oral bioavailability and photostability of MTX.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Luz , Metotrexato/administração & dosagem , Metotrexato/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Metotrexato/sangue , Metotrexato/farmacocinética , Petróleo , Transição de Fase , Ratos Sprague-Dawley , Solubilidade , Difração de Raios X
12.
Pharmazie ; 73(9): 498-502, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30223931

RESUMO

To develop a novel celecoxib (CXB)-loaded drug delivery system, numerous nanosuspensions were prepared with various polymers and surfactants using a wet media milling process, and their particle sizes were subsequently determined. A 24 full factorial design was used to identify the most appropriate preparation conditions. Pharmacokinetics of the selected nanosuspension were performed in rats and compared with those of a drug powder and a commercial CXB-loaded product. Among the carriers investigated, copovidone and sodium lauryl sulphate gave the smallest particle size of the drug in the nanosuspension. In particular, the nanosuspension prepared with 5% CXB, 4% copovidone, and 0.1% sodium lauryl sulphate, under the appropriate conditions, showed a particle size of approximately 190 nm, which was physically stable for at least 8 weeks. This nanosuspension provided a significantly higher plasma concentration and AUC in rats as compared with the drug powder and the commercial product. Thus, this novel CXB-loaded nanosuspension is a promising candidate with excellent stability and enhanced oral bioavailability.


Assuntos
Celecoxib/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Celecoxib/química , Celecoxib/farmacocinética , Química Farmacêutica/métodos , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacocinética , Estabilidade de Medicamentos , Masculino , Tamanho da Partícula , Polímeros/química , Pós , Ratos , Ratos Sprague-Dawley , Tensoativos/química , Suspensões
13.
Chem Commun (Camb) ; 54(65): 9031-9034, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30047958

RESUMO

SN-38 (7-ethyl-10-hydroxy-camptothecin) is an active metabolite of irinotecan (CPT-11) and the most potent camptothecin analogue. In this study, 2,4-dinitrobenzene sulfonyl (DNS) was covalently conjugated as a GSH-sensitive trigger to 10'-OH of SN-38 to yield a GSH-sensitive prodrug, denoted as DNS-SN38, with virtually quenched fluorescence due to donor-excited photo-induced electron transfer (d-PeT). By investigating DNS-SN38's activation properties upon fluorescence restoration and cytotoxic potency against ovarian cancer cell lines (A2780 and m-Cherry + OCSC1-F2), its potential applicability as a useful chemotherapeutic agent was demonstrated.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Corantes Fluorescentes/farmacologia , Pró-Fármacos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Camptotecina/química , Camptotecina/metabolismo , Camptotecina/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Glutationa/metabolismo , Humanos , Irinotecano , Cinética , Camundongos , Microscopia Confocal , Pró-Fármacos/química , Pró-Fármacos/metabolismo
14.
Pharm Dev Technol ; 23(2): 158-166, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28612675

RESUMO

The aim of this study was to develop a novel fluticasone propionate (FP) and salmeterol xinafoate (SX)-loaded dry powder inhaler (DPI) system, which was composed of powder formulation and performance. The air flow resistances were determined with various types of DPI device, showing that the modified RS01 device gave the specific resistance similar to the commercial DPI device. The particle properties of FP, SX, and inhalation grade lactose particles, such as particle size, size distribution, and fine content, were assessed. Subsequently, the aerodynamic behaviors of the DPI powder formulations were evaluated by the in vitro deposition of drugs in the DPI products using Andersen cascade impactor. Amongst the DPI powder formulations tested, the formulation composed of FP, SX, Respitose® SV003, Respitose® SV010, and Respitose® ML006 at the weight ratio of 0.5/0.145/19/19/2 gave depositions, emitted dose, fine particle dose, fine particle fraction, and mass median aerodynamic diameter of drugs similar to the commercial product, suggesting that they had similar aerodynamic behaviors. Furthermore, it gave excellent content uniformity. Thus, this DPI using the modified RS01 device would be recommended as a candidate for FP and SX-loaded pharmaceutical DPI products.


Assuntos
Cápsulas/química , Fluticasona/química , Pós/química , Xinafoato de Salmeterol/química , Administração por Inalação , Aerossóis/química , Química Farmacêutica/métodos , Inaladores de Pó Seco/métodos , Lactose/química , Tamanho da Partícula
15.
J Pharm Biomed Anal ; 149: 374-380, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29145099

RESUMO

The chemical stability of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG), a therapeutic agent for neutropenia, was investigated using a validated stability-indicating reversed phase high-performance liquid chromatographic (RP-HPLC) method. The forced degradation of PLAG was carried out under the stress conditions of hydrolysis (alkaline, acidic and various pH buffers), oxidation, photolysis and heat. A simple, sensitive, specific, robust, precise and accurate RP-HPLC method was developed and validated for evaluating the degradation kinetics of PLAG. The chromatographic validation of various parameters, such as system suitability, detection limit, quantification limit, linearity, accuracy, precision, specificity, robustness and stability, was achieved. The method was validated for linearity, accuracy and precision over the concentration range of 0.7813-100µg/mL (r2=0.9999). The proposed method provided excellent stability study of PLAG indicated by the resolution of degradation products from the drug. Degradation of PLAG provided first order kinetics under all experimental conditions. PLAG was catalysed more rapidly in alkaline and acidic conditions than in neutral conditions. PLAG was relatively stable in photolytic and oxidative conditions compared to hydrolysis and thermal conditions, although this drug was not also stable in these conditions. Exposed to high temperature, PLAG was more rapidly catalysed. The activation energy evaluated from the Arrhenius plot was about 110kJ/mol in the thermal conditions. Additionally, PLAG with a t1/2 of about 400h was very stable at room temperature. Therefore, PLAG was considerably influenced by alkaline and acidic hydrolysis, and thermal degradation.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Diglicerídeos/farmacocinética , Estabilidade de Medicamentos , Temperatura Alta/efeitos adversos , Concentração de Íons de Hidrogênio , Hidrólise , Limite de Detecção , Oxirredução , Fotólise , Sensibilidade e Especificidade
16.
Macromol Rapid Commun ; 38(19)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833950

RESUMO

In the past decade, the self-immolative biodegradable polymer arose as a novel paradigm for its efficient degradation mechanism and vast potential for advanced biomedical applications. This study reports successful synthesis of a novel biodegradable polymer capable of self-immolative backbone cleavage. The monomer is designed by covalent conjugations of both pendant redox-trigger (p-nitrobenzyl alcohol) and self-immolative linker (p-hydroxybenzyl alcohol) to the cyclization spacer (n-2-(hydroxyethyl)ethylene diamine), which serves as the structural backbone. The polymerization of the monomer with hexamethylene diisocyanate yields a linear redox-sensitive polymer that can systemically degrade via sequential 1,6-elimination and 1,5-cyclization reactions within an effective timeframe. Ultimately, the polymer's potential for biomedical application is simulated through in vitro redox-triggered release of paclitaxel from polymeric nanoparticles.


Assuntos
Plásticos Biodegradáveis/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polímeros/química , Plásticos Biodegradáveis/uso terapêutico , Ciclização , Humanos , Isocianatos/química , Nanopartículas/uso terapêutico , Oxirredução , Paclitaxel/química , Paclitaxel/uso terapêutico , Polimerização , Polímeros/uso terapêutico
17.
Drug Deliv ; 24(1): 1018-1025, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28675315

RESUMO

To develop a novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for a water-insoluble oily drug, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) with improved stability and oral bioavailability, numerous S-SNEDDS were prepared with surfactant, hydrophilic polymer, antioxidant, and calcium silicate (porous carrier) using the spray-drying method. Their physicochemical properties were evaluated using emulsion droplet size analysis, SEM and PXRD. Moreover, the solubility, dissolution, stability, and pharmacokinetics of the selected S-SNEDDS were assessed compared with the drug and a commercial soft capsule. Sodium lauryl sulfate (SLS) and hydroxypropyl methylcellulose (HPMC) with the highest drug solubility were selected as surfactant and hydrophilic polymer, respectively. Among the antioxidants tested, only butylated hydroxyanisole (BHA) could completely protect the drug from oxidative degradation. The S-SNEDDS composed of PLAG/SLS/HPMC/BHA/calcium silicate at a weight ratio of 1: 0.25: 0.1: 0.0002: 0.5 provided an emulsion droplet size of less than 300 nm. In this S-SNEDDS, the drug and other ingredients might exist in the pores of carrier and attach onto its surface. It considerably improved the drug stability (about 100 vs. 70%, 60 °C for 5 d) and dissolution (about 80 vs. 20% in 60 min) compared to the commercial soft capsule. Moreover, the S-SNEDDS gave higher AUC, Cmax, and Tmax values than the commercial soft capsule; in particular, the former improved the oral bioavailability of PLAG by about 3-fold. Our results suggested that this S-SNEDDS provided excellent stability and oral bioavailability of PLAG. Thus, this S-SNEDDS would be recommended as a powerful oral drug delivery system for an oily drug, PLAG.


Assuntos
Nanoestruturas , Administração Oral , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Emulsões , Glicerol , Tamanho da Partícula , Solubilidade
18.
Int J Pharm ; 525(1): 60-70, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28414137

RESUMO

The purpose of this study was to develop a novel dabigatran etexilate hemisuccinate (DEH) salt-loaded polycap with bioequivalence to the dabigatran etexilate mesylate (DEM)-loaded commercial product. DEH prepared with dabigatran etexilate base (DE) and succinic acid was less hygroscopic but less soluble than DEM. Numerous micronized DEHs and DEH-loaded solid dispersions were prepared employing the spiral jet-milling and spray-drying techniques, respectively. Among the formulations prepared, a micronized DEH prepared with the injection air at 1.5bar and the grinding air at 2bar, and a DEH-loaded solid dispersion prepared with 6g HPMC most improved the drug solubility, respectively. Moreover, the micronized DEH provided more increased drug solubility and dissolution compared with the solid dispersion, even though its drug solubility was still lower than that of DEM. Unlike the situation in other studies, the enhanced solubility and dissolution of DEH was more due to particle size reduction than to a change to the amorphous form. The micronized DEH prepared with Myrj 52S had greater drug solubility than preparations with other surfactants. Among the organic acids investigated, only fumaric acid (128.8mg) showed a similar pattern in pH changes to the DEM-loaded commercial product. Furthermore, in order to make the environment acidic while preventing the direct contact of the drug with fumaric acid, the polycap was composed of a tablet containing the micronized DEH, Myrj 52S and other ingredients, and separate fumaric acid. This micronized DEH-loaded polycap was dissolution- and bio-equivalent to the DEM-loaded commercial product in beagle dogs. Thus, the novel micronized DEH-loaded polycap would be a promising alternative to the DEM-loaded commercial product.


Assuntos
Dabigatrana/química , Sistemas de Liberação de Medicamentos , Animais , Disponibilidade Biológica , Química Farmacêutica , Cães , Solubilidade , Ácido Succínico/química , Comprimidos
19.
Colloids Surf B Biointerfaces ; 147: 250-257, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27518457

RESUMO

The aim of this study was to assess the effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on the physicochemical characterization and oral bioavailability of a novel l-sulpiride-loaded quaternary microcapsule (QMC). The effect of carriers on drug solubility was investigated. Among the carriers tested, polyvinyl pyrrolidone (PVP), sodium lauryl sulphate (SLS) and TPGS were selected as polymer, surfactant and absorption enhancer, respectively, due to their high drug solubility. Using the solvent evaporation method, numerous QMCs with different ratios of l-sulpiride, PVP, SLS and TPGS were prepared, and their physicochemical properties, solubility and release were evaluated. In addition, the influence of TPGS concentration on the oral bioavailability of various drug doses was evaluated. All QMCs converted the crystalline drug to the amorphous form and remarkably improved the solubility, release and oral bioavailability of the drug. Furthermore, the TPGS concentration in the QMCs hardly affected the crystallinity, particle size and release, but considerably increased the solubility and oral bioavailability of the drug. In particular, as the dose of administered drug was increased, TPGS provided a greater improvement in oral drug bioavailability. Thus, TPGS played an important role in improving the oral bioavailability of l-sulpiride. Moreover, the QMC with a drug/PVP/SLS/TPGS weight ratio of 5:12:1 :20 with approximately 3.3-fold improved oral bioavailability would be recommended as a commercial pharmaceutical product for oral administration of l-sulpiride.


Assuntos
Cápsulas/química , Portadores de Fármacos/administração & dosagem , Sulpirida/administração & dosagem , Vitamina E/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Masculino , Polímeros/administração & dosagem , Polímeros/química , Povidona/administração & dosagem , Povidona/química , Ratos , Ratos Sprague-Dawley , Dodecilsulfato de Sódio/administração & dosagem , Dodecilsulfato de Sódio/química , Solubilidade , Sulpirida/química , Sulpirida/farmacocinética , Tensoativos , Distribuição Tecidual , Vitamina E/química
20.
Int J Pharm ; 511(1): 351-358, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27397868

RESUMO

The purpose of this study was to compare the powder properties, solubility, dissolution and oral absorption of solvent-wetted (SWSD) and kneaded (KNSD) l-sulpiride-loaded solid dispersions. The SWSD and KNSD were prepared with silicon dioxide, sodium laurylsulfate and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) using a spray dryer and high shear mixer, respectively. Their powder properties, solubility, dissolution and oral absorption were assessed compared to l-sulpiride powder. The drug in SWSD was in the amorphous state; however, in KNSD, it existed in the crystalline state. The SWSD with a drug/sodium laurylsulphate/TPGS/silicon dioxide ratio of 5/1/2/12 gave the higher drug solubility and dissolution compared to the KNSD with the same composition. The oral absorption of drug in the SWSD was 1.4 fold higher than the KNSD and 3.0 fold higher than the l-sulpiride powder (p<0.05) owing to better solubility and reduced crystallinity. Furthermore, the SWSD at the half dose was bioequivalent of commercial l-sulpiride-loaded product in rats. Thus, the SWSD with more improved oral absorption would be recommended as an alternative for the l-sulpiride-loaded oral administration.


Assuntos
Química Farmacêutica/métodos , Solventes/química , Solventes/metabolismo , Sulpirida/sangue , Sulpirida/química , Administração Oral , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Masculino , Pós , Ratos , Ratos Sprague-Dawley , Solventes/administração & dosagem , Sulpirida/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA