Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Hazard Mater ; 435: 129027, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35525008

RESUMO

In current oil spill forensics, diagnostic ratios of hydrocarbon biomarker responses are commonly used to compare oil spill samples to source materials in order to determine the identity of the oil. This well recognized procedure was developed by the European Committee for Standardization (CEN) with corresponding published EN 15522-2 Oil Spill Identification guidelines. However, it is further recognized that weathering can have a negative effect on some of the biomarkers used in the analysis, leading to decreased confidence in the result. In this study, polycyclic aromatic sulfur heterocycles (PASHs) and their alkylated forms (APASHs) were assessed for their potential as additional biomarkers. With the aim of identifying stable PASHs and APASHs useful as weathered oil biomarkers, the superior specificity of gas chromatography with high resolution mass spectrometry was exploited to determine chromatographic peak responses for sixteen petroleum oil samples. Extensive study, involving microcosm extreme weathering and spreadsheet development, led to the identification of 19 new diagnostic ratios based on newly discovered stable PASH and APASH biomarkers. Application of the extended diagnostic ratio suite showed high potential to improve the forensic attribution of post-spill weathered oil back to its original source.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Petróleo/análise , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Enxofre
2.
Anal Methods ; 14(7): 717-725, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35107097

RESUMO

Spilled crude oil samples contain various toxic compounds including polycyclic aromatic hydrocarbons (PAHs) as well as sulfur heterocycles (PASHs) and their related alkylated forms (APAHs and APASHs). In this study, a method was successfully developed employing a gas chromatography quadrupole time-of-flight (GC-QToF) mass spectrometer to quantitatively analyze both PAHs/APAHs and PASHs/APASHs in these samples. With GC-QToF, the monoisotopic mass of the compounds is distinguished, allowing the PASHs/APASHs to be extracted separately from the PAHs/APAHs in crude oil. A gas chromatography triple quadrupole (GC-MS/MS) mass spectrometer was also used to confirm that a GC-QToF is the preferred instrument for analyzing these compounds. With the use of PASH/APASH standards to determine response correction factors (RCFs) in relation to PAH standards, the developed method is capable of analyzing PAHs, APAHs, PASHs, and APASHs in a single injection. The use of RCFs allowed for the development of a practical polycyclic aromatic carbon (PAC) method for analyzing a total of 77 compounds of the 2 groups in crude oil. This newly developed method was applied to spilled crude oils, demonstrating its potential in toxicological study as well as oil spill forensic investigation.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Enxofre , Espectrometria de Massas em Tandem
3.
J Chromatogr A ; 1656: 462558, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34597902

RESUMO

A rapid and sensitive liquid chromatography (LC) quadrupole time of flight (QTOF) method has been developed for the determination of resin acid concentrations in aqueous pulp and paper effluent related samples. Calibration R2 of ≥0.995 for twelve resin acids, namely dehydroabietic, 8(14)-abietenic, dihydroisopimaric, levopimaric, neoabietic, pimaric, sandaracopimaric, abietic, isopimaric, palustric, chlorodehydroabietic, and dichlorodehydroabietic acids, was demonstrated in the range 1 µgL-1 to 40 µgL-1. An improved lower limit of quantitation was achieved without use of complex sample extraction and clean-up procedures undertaken by other published methods. Excellent precision and accuracy results were achieved for dehydroabietic, chlorodehydroabietic, dichlorodehydroabietic, isopimaric (integrated inclusive of all C20H30O2 resin acids), dihydroisopimaric and 8(14)-abietenic resin acids, with t-99 percentile detection limits spanning the range 0.05 to 0.07 µgL-1. While measurement for the C20H30O2 resin acids by isopimaric equivalence is considered semi-quantitative and could be an under estimate for the abietic acid component, the developed method demonstrated clear advantage over time consuming, hazardous, and unstable derivatization procedures used for gas chromatography and capillary electrophoresis. The developed LC/QToF method was successfully transferred to an LC triple quadrupole mass spectrometer for routine high throughput trace level analysis. Real world samples, including sea water and estuary water, demonstrated excellent spike recoveries by this procedure, indicating that the method is well suited to the monitoring of industrially derived resin acids in environmental surface waters. While no interferences were observed during routine sample analysis using myristic-1-13C acid and palmitic-1-13C acid internal standards, these were later substituted by myristic-d27 and palmitic-d31 acid in order to improve method robustness for environmental samples where endogenous parent fatty acids could be present.


Assuntos
Ácidos , Resinas Vegetais , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas
4.
J Chromatogr A ; 1615: 460775, 2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-31959455

RESUMO

The international trade in illegally logged and environmentally endangered timber has spurred enforcement agencies to seek additional technical procedures for the identification of wood species. All Dalbergia species are listed under the Convention on International Trade in Endangered Species (CITES) which is the reason this genus was chosen for study. Multiple sources of the heartwood from different Dalbergia species were extracted and chromatographic profiles collected by gas chromatography with high resolution quadrupole Time of Flight mass spectrometry (GC/QToF). The collected data was mined to select peaks and mass ions representative of the investigated Dalbergia species, and used to develop a Microsoft Excel® template offering immediate graphical representation of the results. Using wood specimens sourced from different xylaria, this graphical fingerprint proved adept at definitive identification of Dalbergia species. The CITES Appendix I species, D. nigra, was easily distinguished from D. melanoxylon and look-alike species of other genera. Similarly, a number of other Dalbergia species were differentiated using this current approach. Kernel discrimination analysis (KDA) was applied to increase the confidence of the species identification. The mislabeling of specimens appears to be common, and the emerging technique of GC/QToF in combination with other techniques, offers improved confidence in identification. GC/QToF further provides automation, the dimension of chromatography to avoid interferences, and production of reproducible electron impact positive (EI+) spectra. The prospect of building an EI+ spectral database for future wood identification is an important feature considering the limited accessibility of authenticated wood species specimens.


Assuntos
Botânica/métodos , Comércio/ética , Comércio/métodos , Dalbergia/química , Dalbergia/classificação , Cromatografia Gasosa-Espectrometria de Massas , Madeira/química , Análise Discriminante , Espécies em Perigo de Extinção , Internacionalidade , Íons/análise
5.
Environ Sci Technol ; 54(4): 2228-2243, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31968936

RESUMO

A diagnostic ratio forensics tool, similar to that recognized internationally for oil spill source identification, is proposed for use in conjunction with existing LC/QToF quantitative methodology for bitumen-derived water-soluble organics (WSOs). The concept recognizes that bitumen WSOs bear a chemical skeletal relationship to stearane and hopane oil biomarkers. The method uses response ratios for 50 selected WSOs compared between samples by their relative percent difference and adopted acceptance criteria. Oil sands process-affected water (OSPW) samples from different locations within a single tailings pond were shown to match, while those from different industrial sites did not. Acid extractable organic samples collected over 3 weeks from the same location within a single tailings pond matched with each other; as did temporal OSPW samples a year apart. Blind quality assurance samples of OSPW diluted in surface waters were positively identified to their corresponding OSPW source. No interferences were observed from surface waters, and there was no match between bitumen-influenced groundwater and OSPW samples, as expected for different sources. Proof of concept for OSPW source identification using diagnostic ratios was demonstrated, with anticipated application in the tracking of OSPW plumes in surface receiving waters, together with the potential for confirmation of source.


Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Ácidos Carboxílicos , Areia
6.
J Vis Exp ; (146)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31081805

RESUMO

New analytical methods are urgently needed to enable high-throughput, yet comprehensive drug screening, given an alarming opioid and prescription drug crisis in public health. Conventional urine drug testing based on a two-tier immunoassay screen followed by a gas chromatography-tandem mass spectrometry (GC-MS/MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS) method are expensive and prone to bias while being limited to targeted panels of known drugs of abuse (DoA). Herein, we outline an improved method for drug surveillance that allows for the resolution and detection of an expanded panel of DoA and their metabolites when using multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS). Multiplexed separations of ten urine samples with a quality control by CE (< 3 min/sample) in conjunction with full-scan data acquisition using a time-of-flight mass spectrometer (TOF-MS) under positive ion mode detection allows for the identification and quantification of DoA above recommended cut-off levels. An excellent resolution of drug isomers and isobars, including background interferences, are achieved when using MSI-CE-MS with an electrokinetic spacer between sample segments, where accurate mass/molecular formula together with the comigration of a matching deuterated internal standard and the detection of one or more bio-transformed metabolites facilitate DoA identification over a wider detection window. Additionally, urine samples can be analyzed directly without enzyme deconjugation for the rapid screening without complicated sample workup. MSI-CE-MS enables the surveillance of a broad spectrum of DoA that is required for the treatment monitoring of high-risk patients, including confirming prescribed drug adherence, revealing illicit drug use/substitution, and evaluating optimal dosage regimes as required for new advances in precision medicine.


Assuntos
Eletroforese Capilar , Espectrometria de Massas , Transtornos Relacionados ao Uso de Substâncias/urina , Humanos , Injeções , Controle de Qualidade
7.
J Chromatogr A ; 1598: 113-121, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987784

RESUMO

A high resolution mass spectrometry method was developed for the environmental impact monitoring of oil spill dispersants. Previously reported instability of dioctyl sulfosuccinate (DOSS) dispersant tracer was addressed by the new procedure. The method monitors both DOSS and its degradation product, monooctyl sulfosuccinate (MOSS), by liquid chromatography time-of-flight mass spectrometry. The related isomer, 4-(2-ethylhexyl) 2-sulfobutanedioate, was chromatographically resolved from MOSS but was not a product of DOSS degradation. Using this direct injection method (10 µL), the practical lower limit of quantitation was 0.5 nM for each analyte, a concentration equivalent to 0.22 ng mL-1, or 0.30 ng mL-1 including initial dilution factor with acetonitrile. The method was shown applicable to analysis of the dispersants Corexit® EC9500 A, Finasol OSR 52, Slickgone NS, and Slickgone EW for which DOSS is an active ingredient. A marine microcosm study of Corexit EC9500A, together with diluted bitumen (dilbit), at 15 ± 1 °C, provided evidence of the stoichiometric conversion of DOSS to MOSS under conditions reflecting a western Canadian marine environment. The advantage of the developed method is in its ability to extend environmental seawater sample collection time from 4 days for DOSS alone, to 14 days when both DOSS and MOSS are simultaneously analysed and results combined. The collection time is likely extended beyond the 14 day period with cooler temperatures. Preservation of collected seawater samples using sodium hydroxide, converting DOSS into MOSS in situ, was rejected due to stability issues. Addition of disodium ethylenediaminetetraacetic acid did not improve hold times, thus eliminating the theory of cation induced micelle effects causing DOSS loss.


Assuntos
Ácido Dioctil Sulfossuccínico/química , Monitoramento Ambiental/métodos , Lipídeos/química , Água do Mar/química , Succinatos/química , Tensoativos/análise , Canadá , Cromatografia Líquida , Lipídeos/análise , Compostos Orgânicos/análise , Tensoativos/química , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
8.
Anal Chem ; 89(21): 11853-11861, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28981253

RESUMO

New technologies are urgently required for reliable drug screening given a worldwide epidemic of prescription drug abuse and its devastating socioeconomic impacts on public health. Primary screening of drugs of abuse (DoA) currently relies on immunoassays that are prone to bias and are not applicable to detect an alarming array of psychoactive stimulants, tranquilizers, and synthetic opioids. These limitations impact patient safety when monitoring for medication compliance, drug substitution, or misuse/abuse and require follow-up confirmatory testing by more specific yet lower throughput instrumental methods. Herein, we introduce a high throughput platform for nontargeted screening of a broad spectrum of DoA and their metabolites based on multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS). We demonstrate that MSI-CE-MS enables serial injections of 10 samples within a single run (<3 min/sample) where multiplexed electrophoretic separations are coupled to high resolution MS with full-scan data acquisition. Unambiguous drug identification was achieved by four or more independent parameters, including comigration with a deuterated internal standard or in silico prediction of electromigration behavior together with accurate mass, most likely molecular formula, as well as MS/MS as required for confirmation testing. Acceptable precision was demonstrated for over 50 DoA at 3 concentration levels over 4 days (median coefficient of variance = 13%, n = 117) with minimal ion suppression, isobaric interferences, and sample carry-over (<1%). This approach offers a rapid yet accurate method for simultaneous detection and identification of DoA at their recommended screening cutoff levels in human urine while allowing for systematic surveillance, specimen verification, and retrospective testing of designer drugs that elude conventional drug tests.


Assuntos
Eletroforese Capilar/métodos , Drogas Ilícitas/análise , Espectrometria de Massas/métodos , Calibragem , Humanos , Drogas Ilícitas/química , Drogas Ilícitas/urina , Injeções , Limite de Detecção , Metabolômica
9.
Artigo em Inglês | MEDLINE | ID: mdl-27901640

RESUMO

The advantage of using naphthenic acid (NA) mixtures for the determination of total NA lies in their chemical characteristics and identification of retention times distinct from isobaric interferences. However, the differing homolog profiles and unknown chemical structures of NA mixtures do not allow them to be considered a traceable reference material. The current study provides a new tool for the comparative assessment of different NA mixtures by direct reference to a single, well-defined and traceable compound, decanoic-d19 acid. The method employed an established liquid chromatography time-of-flight mass spectrometry (LC/QToF) procedure that was applicable both to the classic O2 NA species dominating commercial mixtures and additionally to the O4 species known to be present in acid extractable organics (AEOs) derived from oil sands process water (OSPW). Four different commercial NA mixtures and one OSPW-derived AEOs mixture were comparatively assessed. Results showed significant difference among Merichem Technical, Aldrich, Acros, and Kodak commercial NA mixtures with respect to "equivalent to decanoic-d19 acid" concentration ratios to nominal. Furthermore, different lot numbers of single commercial NA mixtures were found to be inconsistent with respect to their homolog content by percent response. Differences in the observed homolog content varied significantly, particularly at the lower (n = 9-14) and higher (n = 20-23) carbon number ranges. Results highlighted the problem between using NA mixtures from different sources and different lot numbers but offered a solution to the problem from a concentration perspective. It is anticipated that this tool may be utilized in review of historical data in addition to future studies, such as the study of OSPW derived acid extractable organics (AEOs) and fractions employed during toxicological studies.


Assuntos
Ácidos Carboxílicos/toxicidade , Resíduos Industriais , Campos de Petróleo e Gás , Poluentes Químicos da Água/toxicidade , Cromatografia Líquida , Humanos , Limite de Detecção , Espectrometria de Massas , Valores de Referência
10.
J Chromatogr A ; 1405: 49-71, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26074097

RESUMO

A rapid and sensitive liquid chromatography quadrupole time of flight method has been established for the determination of total naphthenic acid concentrations in aqueous samples. This is the first methodology that has been adopted for routine, high resolution, high throughput analysis of total naphthenic acids at trace levels in unprocessed samples. A calibration range from 0.02 to 1.0µgmL(-1) total Merichem naphthenic acids was validated and demonstrated excellent accuracy (97-111% recovery) and precision (1.9% RSD at 0.02µgmL(-1)). Quantitative validation was also demonstrated in a non-commercial oil sands process water (OSPW) acid extractable organics (AEOs) fraction containing a higher percentage of polycarboxylic acid isomers than the Merichem technical mix. The chromatographic method showed good calibration linearity of ≥0.999 RSQ to 0.005µgmL(-1) total naphthenic acids with a precision <3.1% RSD and a calculated detection limit of 0.0004µgmL(-1) employing Merichem technical mix reference material. The method is well suited to monitoring naturally occurring and industrially derived naphthenic acids (and other AEOs) present in surface and ground waters in the vicinity of mining developments. The advantage of the current method is its direct application to unprocessed environmental samples and to examine natural naphthenic acid isomer profiles. It is noted that where the isomer profile of samples differs from that of the reference material, results should be considered semi-quantitative due to the lack of matching isomer content. The fingerprint profile of naphthenic acids is known to be transitory during aging and the present method has the ability to adapt to monitoring of these changes in naphthenic acid content. The method's total ion scan approach allows for data previously collected to be examined retrospectively for specific analyte mass ions of interest. A list of potential naphthenic acid isomers that decrease in response with aging is proposed and a quantitative assay of an adamantane carboxylic acid is reported.


Assuntos
Ácidos Carboxílicos/administração & dosagem , Água Subterrânea/química , Poluentes Químicos da Água/análise , Cromatografia Líquida/métodos , Isomerismo , Limite de Detecção , Mineração , Campos de Petróleo e Gás , Espectrometria de Massas em Tandem/métodos
11.
J Chromatogr A ; 1334: 118-25, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24560353

RESUMO

A method for the rapid determination of 18 polycyclic aromatic hydrocarbons (PAHs) in soil has been established based on a simplified solvent extraction and GC/MS/MS operated in pseudo multiple reaction monitoring mode (PMRM), a technique where the two quadrupoles mass monitor the same m/z. The PMRM approach proved superior to the classic single quadrupole technique, with enhanced sensitivity, specificity, and significant reduction in time consuming sample clean-up procedures. Trace level PAHs could be readily confirmed by their retention times and characteristic ions. The limit of quantitation in soil was observed to be 20ng/g for 16 EPA-priority PAHs and 2 additional PAHs specific to Environment Canada. The developed method was linear over the calibration range 20-4000ng/g in soil, with observed coefficients of determination of >0.996. Individual PAH recoveries from fortified soil were in the range 58.1 to 110.1%, with a precision between 0.3 and 4.9% RSD. The ruggedness of the method was demonstrated by the success of an inter-lab proficiency test study organized by the Canadian Association for Laboratory Accreditation. The present method was found to be applicable as a rapid, routine screening for PAH contamination in soil, with significant savings in terms of preparation time and solvent usage.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Espectrometria de Massas em Tandem , Canadá , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Sensibilidade e Especificidade , Poluentes do Solo/isolamento & purificação
12.
J Chromatogr A ; 1278: 98-107, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23336941

RESUMO

Over the past 20 years, oil sands exploration and processing in Canada have grown steadily, leading to the development of intensive large-scale operations in Alberta, Canada. Naphthenic acids (NAs), a complex mixture of aliphatic and alicyclic carboxylic acids, are by-products of oil sands processing and are known to be toxic. While oil sands processing water (OSPW) is contained in tailings ponds, potential seepage and leaking of OSPW and its contaminants into surrounding surface water systems is a concern. The ability to quantify NAs and their isomers in OSPW surrounding water is essential for monitoring these spills. Unfortunately, quantification of NAs and their isomers is challenging due to the complexity of the NA mixtures, the lack of commercially available standards, and interference from naturally occurring NA compounds. Techniques such as FT-IR and GC/MS are currently used to analyse NAs, but are limited by poor sensitivity and specificity in the case of FT-IR and long sample preparation and instrument run time for GC/MS. To tackle these issues, a rapid LC/MS method was developed which can quickly quantify NAs in surface water with much better sensitivity and specificity than current methods. This method uses large volume injection, ESI negative mode and a Poroshell LC column to improve the method limits of detection (LOD) and quantitation (LOQ). The method is robust and has no complicated sample preparation steps. The method detection limit (MDL) is 0.01 mg/L (10 ppb) and low limit of quantitation (LLOQ) of 0.1mg/L (100 ppb), both for surface water. The developed method was tested with samples from the oil sands producing region, and demonstrated its applicability for fast screening of surface water samples before resorting to costly high accuracy and high resolution mass spectrometry determination. This is the first very rapid LC/MS method using large volume single column direct injection for quantitative determination of naphthenic acids in surface water.


Assuntos
Ácidos Carboxílicos/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise , Limite de Detecção , Reprodutibilidade dos Testes
13.
Mol Cell Biochem ; 307(1-2): 265-71, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17786542

RESUMO

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory immune modulator that plays an important role in the regulation of innate and adaptive immune responses. MIF signaling involves CD74/CD44 membrane receptor complexes, the chemokine receptors CXCR2 and 4 as well as uptake by non-receptor mediated endocytosis. Endocytosed or endogenous MIF interacts with Jun activation domain-binding protein 1 (Jab1), originally described as transcriptional co-activator for the transcription factor AP-1, that is also known as subunit 5 of the COP9 signalosome (CSN5). Since Jab1/CSN5 also functions as a co-activator for a number of steroid hormone receptors (SHRs), it had been speculated that MIF could modulate Jab1/CSN5-SHR interactions. Here we show (i) that fluorescently labeled MIF is internalized by NIH 3T3 cells within minutes, (ii) compromises the induction of phospho-c-Jun levels by TNFalpha and PMA and, hence, is biologically active, but (iii) is not able to interfere with co-activation by Jab1/CSN5 of the androgen receptor.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Peptídeo Hidrolases/fisiologia , Receptores Androgênicos/metabolismo , Ativação Transcricional , Animais , Complexo do Signalossomo COP9 , Endocitose , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Células NIH 3T3 , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Recombinantes/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo , Fatores de Transcrição/fisiologia , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA