Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Obes Res Clin Pract ; 14(4): 339-344, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32561167

RESUMO

BACKGROUND: Traditionally, obesity has been regarded as protective against osteoporosis. However, recent accumulating evidences suggest that visceral obesity can increase the risk of osteoporosis and obesity-driven dysfunctional metabolic activity in visceral adipose tissue (VAT) is considered as a key underlying mechanism. Visceral obesity is known to increase during menopausal transition.18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is an established method to assess the degree of VAT metabolic activity. We aimed to investigate the association between VAT metabolic activity evaluated by 18F-FDG PET/CT and osteoporosis in healthy postmenopausal Korean women. METHODS: A total of 115 postmenopausal women who underwent routine health check-up were enrolled in this study, retrospectively. They all underwent dual-energy X-ray absorptiometry and 18F-FDG PET/CT. Osteoporosis was defined as bone mineral density (BMD) T-score ≤ -2.5 at either lumbar spine or femoral neck. VAT metabolic activity was defined as the maximum standardized uptake value (SUVmax) of VAT divided by the SUVmax of subcutaneous adipose tissue (V/S ratio). RESULTS: The participants with osteoporosis showed significantly higher V/S ratio, age, body mass index, waist circumference, and postmenopausal period than the participants without osteoporosis. V/S ratio of 1.33 was proposed as an optimal cut-off value for identifying osteoporosis. Furthermore, V/S ratio was the most significant predictive factor for osteoporosis in postmenopausal woman by uni-and multivariate analyses. Interestingly, V/S ratio showed significant positive correlation with high sensitivity C-reactive protein, a surrogate marker for systemic inflammation. CONCLUSION: VAT metabolic activity assessed by 18F-FDG PET/CT is associated with osteoporosis in healthy postmenopausal Korean women.


Assuntos
Fluordesoxiglucose F18 , Gordura Intra-Abdominal , Osteoporose Pós-Menopausa , Feminino , Humanos , Gordura Intra-Abdominal/diagnóstico por imagem , Gordura Intra-Abdominal/metabolismo , Osteoporose Pós-Menopausa/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Pós-Menopausa , Compostos Radiofarmacêuticos , República da Coreia , Estudos Retrospectivos
2.
Int J Mol Sci ; 20(2)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658428

RESUMO

Bone metastasis is the terminal stage disease of prostate, breast, renal, and lung cancers, and currently no therapeutic approach effectively cures or prevents its progression to bone metastasis. One of the hurdles to the development of new drugs for bone metastasis is the complexity and heterogeneity of the cellular components in the metastatic bone microenvironment. For example, bone cells, including osteoblasts, osteoclasts, and osteocytes, and the bone marrow cells of diverse hematopoietic lineages interact with each other via numerous cytokines and receptors. c-Met tyrosine kinase receptor and its sole ligand hepatocyte growth factor (HGF) are enriched in the bone microenvironment, and their expression correlates with the progression of bone metastasis. However, no drugs or antibodies targeting the c-Met/HGF signaling axis are currently available in bone metastatic patients. This significant discrepancy should be overcome by further investigation of the roles and regulation of c-Met and HGF in the metastatic bone microenvironment. This review paper summarizes the key findings of c-Met and HGF in the development of novel therapeutic approaches for bone metastasis.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Progressão da Doença , Humanos , Terapia de Alvo Molecular , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Microambiente Tumoral/efeitos dos fármacos
3.
J Adv Prosthodont ; 7(2): 138-45, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25932312

RESUMO

PURPOSE: The objective of this study was to conduct an in vitro comparative evaluation of polished and laserdimpled titanium (Ti) surfaces to determine whether either surface has an advantage in promoting the attachment of epithelial-like cells and fibroblast to Ti. MATERIALS AND METHODS: Forty-eight coin-shaped samples of commercially pure, grade 4 Ti plates were used in this study. These discs were cleaned to a surface roughness (Ra: roughness centerline average) of 180 nm by polishing and were divided into three groups: SM (n=16) had no dimples and served as the control, SM15 (n=16) had 5-µm dimples at 10-µm intervals, and SM30 (n=16) had 5-µm dimples at 25-µm intervals in a 2 × 4 mm(2) area at the center of the disc. Human gingival squamous cell carcinoma cells (YD-38) and human lung fibroblasts (MRC-5) were cultured and used in cell proliferation assays, adhesion assays, immunofluorescent staining of adhesion proteins, and morphological analysis by SEM. The data were analyzed statistically to determine the significance of differences. RESULTS: The adhesion strength of epithelial cells was higher on Ti surfaces with 5-µm laser dimples than on polished Ti surfaces, while the adhesion of fibroblasts was not significantly changed by laser treatment of implant surfaces. However, epithelial cells and fibroblasts around the laser dimples appeared larger and showed increased expression of adhesion proteins. CONCLUSION: These findings demonstrate that laser dimpling may contribute to improving the periimplant soft tissue barrier. This study provided helpful information for developing the transmucosal surface of the abutment.

4.
Artigo em Inglês | MEDLINE | ID: mdl-24462964

RESUMO

The industrial application of nanotechnology, particularly using zinc oxide (ZnO), has grown rapidly, including products such as cosmetics, food, rubber, paints, and plastics. However, despite increasing population exposure to ZnO, its potential genotoxicity remains controversial. The biological effects of nanoparticles depend on their physicochemical properties. Preparations with well-defined physico-chemical properties and standardized test methods are required for assessing the genotoxicity of nanoparticles. In this study, we have evaluated the genotoxicity of four kinds of ZnO nanoparticles: 20nm and 70nm size, positively or negatively charged. Four different genotoxicity tests (bacterial mutagenicity assay, in vitro chromosomal aberration test, in vivo comet assay, and in vivo micronucleus test, were conducted, following Organization for Economic Cooperation and Development (OECD) test guidelines with good laboratory practice (GLP) procedures. No statistically significant differences from the solvent controls were observed. These results suggest that surface-modified ZnO nanoparticles do not induce genotoxicity in in vitro or in vivo test systems.


Assuntos
Dano ao DNA , Nanopartículas Metálicas/toxicidade , Óxido de Zinco/toxicidade , Animais , Células Cultivadas , Ensaio Cometa/métodos , Cricetinae , Cricetulus , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes para Micronúcleos , Ratos , Ratos Sprague-Dawley
6.
Int J Nanomedicine ; 9 Suppl 2: 3-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565821

RESUMO

Currently, products made with nanomaterials are used widely, especially in biology, bio-technologies, and medical areas. However, limited investigations on potential toxicities of nanomaterials are available. Hence, diverse and systemic toxicological data with new methods for nanomaterials are needed. In order to investigate the nanotoxicology of nanoparticles (NPs), the Research Team for Nano-Associated Safety Assessment (RT-NASA) was organized in three parts and launched. Each part focused on different contents of research directions: investigators in part I were responsible for the efficient management and international cooperation on nano-safety studies; investigators in part II performed the toxicity evaluations on target organs such as assessment of genotoxicity, immunotoxicity, or skin penetration; and investigators in part III evaluated the toxicokinetics of NPs with newly developed techniques for toxicokinetic analyses and methods for estimating nanotoxicity. The RT-NASA study was carried out in six steps: need assessment, physicochemical property, toxicity evaluation, toxicokinetics, peer review, and risk communication. During the need assessment step, consumer responses were analyzed based on sex, age, education level, and household income. Different sizes of zinc oxide and silica NPs were purchased and coated with citrate, L-serine, and L-arginine in order to modify surface charges (eight different NPs), and each of the NPs were characterized by various techniques, for example, zeta potentials, scanning electron microscopy, and transmission electron microscopy. Evaluation of the "no observed adverse effect level" and systemic toxicities of all NPs were performed by thorough evaluation steps and the toxicokinetics step, which included in vivo studies with zinc oxide and silica NPs. A peer review committee was organized to evaluate and verify the reliability of toxicity tests, and the risk communication step was also needed to convey the current findings to academia, industry, and consumers. Several limitations were encountered in the RT-NASA project, and they are discussed for consideration for improvements in future studies.


Assuntos
Nanopartículas/toxicidade , Nanotecnologia , Dióxido de Silício/toxicidade , Óxido de Zinco/toxicidade , Humanos , Nanotecnologia/organização & administração , Nanotecnologia/normas , Avaliação das Necessidades , Segurança
7.
Int J Nanomedicine ; 9 Suppl 2: 11-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565822

RESUMO

BACKGROUND: The purpose of our study was to understand consumers' risk awareness and need for relevant information about nanotechnology and nanoparticles contained in products currently being sold in Korea. METHODS: One thousand and seven adult consumers (aged 20-50 years) were randomly selected from all over South Korea between November 1 and 9, 2010. We surveyed the origin and degree of their concern and their need for information and education regarding nanomaterials. RESULTS: Analysis of the survey results showed no significant differences in responses by sex, age, and level of education, but significant differences were found in responses based on average monthly household income. Our research showed that consumers have vague expectations for and positive image of nanotechnology and nanoproducts but do not clearly understand what they are. In addition, we found that preparing and disseminating information to consumers is required in order to provide correct information about nanotechnology to the public. CONCLUSION: A communication system should be established among the multiple stakeholders involved with nanomaterials to address consumer expectations and concerns. Further, a safety evaluation system must be set up, the results of which should be processed by a reliable expert group so they can be disseminated to the public.


Assuntos
Comportamento do Consumidor , Conhecimentos, Atitudes e Prática em Saúde , Nanoestruturas , Nanotecnologia , Inquéritos e Questionários , Adulto , Humanos , Pessoa de Meia-Idade , República da Coreia , Adulto Jovem
8.
Int J Nanomedicine ; 9 Suppl 2: 21-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565823

RESUMO

PURPOSE: This study examined the need for public communication about nanotechnologies and nanoparticles by providing a comparative analysis of the differences in risk awareness of nanotechnologies and nanoparticles between consumers and experts. METHODS: A total of 1,007 consumers and 150 experts participated in this study. A questionnaire was prepared examining their awareness of nanotechnologies and nanomaterials and their view of the necessity for information and education about the latest nanotechnologies and nanomaterials. RESULTS: Our results indicated that the expert group recognized that they knew more than consumers about nanotechnology and that there was a need for relevant education in nanotechnology and nanomaterials among consumers. We found that the consumer group had a more positive attitude toward nanotechnology, even though they did not know much about it. Moreover, the consumer group was inconclusive about the type of information on nanotechnology deemed necessary for the public, as well as the suitable party to be responsible for education and for delivering the information. CONCLUSION: An education and promotion program targeting consumers should be established to overcome the differences between consumers and experts in their awareness of nanotechnology. Specifically, the establishment of concepts for nanomaterials or nanoproducts is required immediately. With clear standards on nanomaterials, consumers can make informed decisions in selecting nanoproducts in the market.


Assuntos
Comportamento do Consumidor , Conhecimentos, Atitudes e Prática em Saúde , Nanoestruturas , Nanotecnologia , Humanos , República da Coreia
9.
Int J Nanomedicine ; 9 Suppl 2: 41-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565825

RESUMO

In this study, four types of standardized ZnO nanoparticles were prepared for assessment of their potential biological risk. Powder-phased ZnO nanoparticles with different particle sizes (20 nm and 100 nm) were coated with citrate or L-serine to induce a negative or positive surface charge, respectively. The four types of coated ZnO nanoparticles were subjected to physicochemical evaluation according to the guidelines published by the Organisation for Economic Cooperation and Development. All four samples had a well crystallized Wurtzite phase, with particle sizes of ∼30 nm and ∼70 nm after coating with organic molecules. The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding. Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about -40 mV) or positive (about +25 mV). Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties.


Assuntos
Nanopartículas Metálicas/química , Óxido de Zinco/química , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície
10.
Int J Nanomedicine ; 9 Suppl 2: 67-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565827

RESUMO

This study was undertaken to investigate the potential toxicity and establish the no observed adverse effect level (NOAEL) and target organ(s) of negatively charged colloidal silica particles of different sizes, ie, SiO2 (EN20(-)) (20 nm) or SiO2 (EN100(-)) 2(100 nm), administered by gavage in Sprague-Dawley rats. After verification of the physicochemical properties of the SiO2 particles to be tested, a preliminary dose range-finding study and 90-day repeated dose study were conducted according to the Organisation for Economic Cooperation and Development test guideline. Based on the results of the 14-day dose range-finding study, a high dose was determined to be 2,000 mg/kg, and middle and low doses were set at 1,000 and 500 mg/kg, respectively. In the 90-day toxicity study, there were no animal deaths in relation to administration of SiO2 particles of either size. In addition, no treatment-related clinical changes or histopathological findings were observed in any of the experimental groups. Moreover, no difference in toxic effects from chronic exposure to SiO2 (EN20(-))(20 nm) or SiO2 (EN100(-)) (100 nm) was observed. The results of this study indicate that the NOAEL for SiO2 (EN20(-)) and SiO2 (EN100(-)) would most likely be 2,000 mg/kg, and no target organ was identified in rats of either sex.


Assuntos
Coloides , Nanopartículas , Dióxido de Silício , Administração Oral , Animais , Coloides/administração & dosagem , Coloides/química , Coloides/toxicidade , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/toxicidade , Nível de Efeito Adverso não Observado , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Testes de Toxicidade Crônica
11.
Int J Nanomedicine ; 9 Suppl 2: 79-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565828

RESUMO

PURPOSE: The widespread use of nanoparticles (NPs) in industrial and biomedical applications has prompted growing concern regarding their potential toxicity and impact on human health. This study therefore investigated the subchronic, systemic oral toxicity and no-observed-adverse-effect level (NOAEL) of 20 nm, negatively charged zinc oxide (ZnO(SM20(-))) NPs in Sprague Dawley rats for 90 days. METHODS: The high-dose NP level was set at 500 mg/kg of bodyweight, and the mid- and low-dose levels were set at 250 and 125 mg/kg, respectively. The rats were observed during a 14-day recovery period after the last NP administration for the persistence or reduction of any adverse effects. Toxicokinetic and distribution studies were also conducted to determine the systemic distribution of the NPs. RESULTS: No rats died during the test period. However, ZnO(SM20(-)) NPs (500 mg/kg) induced changes in the levels of anemia-related factors, prompted acinar cell apoptosis and ductular hyperplasia, stimulated periductular lymphoid cell infiltration and excessive salivation, and increased the numbers of regenerative acinar cells in the pancreas. In addition, stomach lesions were seen at 125, 250, and 500 mg/kg, and retinal atrophy was observed at 250 and 500 mg/kg. The Zn concentration was dose-dependently increased in the liver, kidney, intestines, and plasma, but not in other organs investigated. CONCLUSION: A ZnO(SM20(-)) NP NOAEL could not be established from the current results, but the lowest-observed-adverse-effect level was 125 mg/kg. Furthermore, the NPs were associated with a number of undesirable systemic actions. Thus, their use in humans must be approached with caution.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Administração Oral , Animais , Ânions , Apoptose/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Pâncreas/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Testes de Toxicidade Subcrônica , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química , Óxido de Zinco/farmacocinética , Óxido de Zinco/toxicidade
12.
Int J Nanomedicine ; 9 Suppl 2: 93-107, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565829

RESUMO

PURPOSE: The study reported here was conducted to determine the systemic oral toxicity and to find the no-observed-adverse-effect level of 20 nm positively charged zinc oxide (ZnO(SM20(+))) nanoparticles in Sprague Dawley rats for 90 days. METHODS: For the 90-day toxicity study, the high dose was set as 500 mg per kg of body weight (mg/kg) and the middle and low dose were set to 250 mg/kg and 125 mg/kg, respectively. The rats were held for a 14-day recovery period after the last administration, to observe for the persistence or reduction of any toxic effects. A distributional study was also carried out for the systemic distribution of ZnO(SM20(+)) NPs. RESULTS: No rats died during the test period. There were no significant clinical changes due to the test article during the experimental period in functional assessment, body weight, food and water consumption, ophthalmological testing, urine analysis, necropsy findings, or organ weights, but salivation was observed immediately after administration in both sexes. The total red blood cell count was increased, and hematocrit, albumin, mean cell volume, mean cell hemoglobin, and mean cell hemoglobin concentration were decreased significantly compared with control in both 500 mg/kg groups. Total protein and albumin levels were decreased significantly in both sexes in the 250 and 500 mg/kg groups. Histopathological studies revealed acinar cell apoptosis in the pancreas, inflammation and edema in stomach mucosa, and retinal atrophy of the eye in the 500 mg/kg group. CONCLUSION: There were significant parameter changes in terms of anemia in the hematological and blood chemical analyses in the 250 and 500 mg/kg groups. The significant toxic change was observed to be below 125 mg/kg, so the no-observed-adverse-effect level was not determined, but the lowest-observed-adverse-effect level was considered to be 125 mg/kg in both sexes and the target organs were found to be the pancreas, eye, and stomach.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Cátions , Edema , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Pâncreas/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Testes de Toxicidade Subcrônica , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química , Óxido de Zinco/farmacocinética , Óxido de Zinco/toxicidade
13.
Int J Nanomedicine ; 9 Suppl 2: 109-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565830

RESUMO

Nanoparticles (NPs) are used commercially in health and fitness fields, but information about the toxicity and mechanisms underlying the toxic effects of NPs is still very limited. The aim of this study is to investigate the toxic effect(s) of 100 nm negatively (ZnO(AE100[-])) or positively (ZnO(AE100[+])) charged zinc oxide (ZnO) NPs administered by gavage in Sprague Dawley rats, to establish a no observed adverse effect level, and to identify target organ(s). After verification of the primary particle size, morphology, hydrodynamic size, and zeta potential of each test article, we performed a 90-day study according to Organisation for Economic Co-operation and Development test guideline 408. For the 90-day study, the high dose was set at 500 mg/kg and the middle and low doses were set at 125 mg/kg and 31.25 mg/kg, respectively. Both ZnO NPs had significant changes in hematological and blood biochemical analysis, which could correlate with anemia-related parameters, in the 500 mg/kg groups of both sexes. Histopathological examination showed significant adverse effects (by both test articles) in the stomach, pancreas, eye, and prostate gland tissues, but the particle charge did not affect the tendency or the degree of the lesions. We speculate that this inflammatory damage might result from continuous irritation caused by both test articles. Therefore, the target organs for both ZnO(AE100(-)) and ZnO(AE100(+)) are considered to be the stomach, pancreas, eye, and prostate gland. Also, the no observed adverse effect level for both test articles was identified as 31.25 mg/kg for both sexes, because the adverse effects were observed at all doses greater than 125 mg/kg.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Administração Oral , Animais , Feminino , Masculino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Pâncreas/efeitos dos fármacos , Ratos Sprague-Dawley , Estômago/efeitos dos fármacos , Distribuição Tecidual , Testes de Toxicidade , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química , Óxido de Zinco/farmacocinética , Óxido de Zinco/toxicidade
14.
Int J Nanomedicine ; 9 Suppl 2: 127-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565831

RESUMO

Silica is a very common material that can be found in both crystalline and amorphous forms. Well-known toxicities of the lung can occur after exposure to the crystalline form of silica. However, the toxicities of the amorphous form of silica have not been thoroughly studied. The majority of in vivo studies of amorphous silica nanoparticles (NPs) were performed using an inhalation exposure method. Since silica NPs can be commonly administered through the skin, a study of dermal silica toxicity was necessary to determine any harmful effects from dermal exposures. The present study focused on the results of systemic toxicity after applying 20 nm colloidal silica NPs on rat skin for 90 days, in accordance with the Organization for Economic Cooperation and Development test guideline 411 with a good laboratory practice system. Unlike the inhalation route or gastrointestinal route, the contact of silica NPs through skin did not result in any toxicity or any change in internal organs up to a dose of 2,000 mg/kg in rats.


Assuntos
Exposição Ambiental/análise , Nanopartículas , Dióxido de Silício , Administração Cutânea , Animais , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/toxicidade , Ratos , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Testes de Toxicidade Crônica
15.
Int J Nanomedicine ; 9 Suppl 2: 137-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565832

RESUMO

Zinc oxide (ZnO) works as a long-lasting, broad-spectrum physical sunblock, and can prevent skin cancer, sunburn, and photoaging. Nanosized ZnO particles are used often in sunscreens due to consumer preference over larger sizes, which appear opaque when dermally applied. Although the US Food and Drug Administration approved the use of nanoparticles (NPs) in sunscreens in 1999, there are ongoing safety concerns. The aim of this study was to evaluate the subchronic toxicity of ZnO NPs after dermal application according to the Organization for Economic Cooperation and Development Test Guidelines 411 using Good Laboratory Practice. Sprague Dawley rats were randomly divided into eight (one control, one vehicle control, three experimental, and three recovery) groups. Different concentrations of ZnO NPs were dermally applied to the rats in the experimental groups for 90 days. Clinical observations as well as weight and food consumption were measured and recorded daily. Hematology and biochemistry parameters were determined. Gross pathologic and histopathologic examinations were performed on selected tissues from all animals. Analyses of tissue were undertaken to determine target organ tissue distribution. There was no increased mortality in the experimental group. Although there was dose-dependent irritation at the site of application, there were no abnormal findings related to ZnO NPs in other organs. Increased concentrations of ZnO in the liver, small intestine, large intestine, and feces were thought to result from oral ingestion of ZnO NPs via licking. Penetration of ZnO NPs through the skin seemed to be limited via the dermal route. This study demonstrates that there was no observed adverse effect of ZnO NPs up to 1,000 mg/kg body weight when they are applied dermally.


Assuntos
Nanopartículas , Óxido de Zinco , Administração Cutânea , Animais , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/toxicidade , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade Crônica , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química , Óxido de Zinco/toxicidade
16.
Int J Nanomedicine ; 9 Suppl 2: 145-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565833

RESUMO

This study investigated the potential adverse effects of zinc oxide nanoparticles (ZnO(SM20[-]) NPs; negatively charged, 20 nm) on pregnant dams and embryo-fetal development after maternal exposure over the period of gestational days 5-19 with Sprague Dawley rats. ZnO(SM20(-)) NPs were administered to pregnant rats by gavage at 0 mg/kg/day, 100 mg/kg/day, 200 mg/kg/day, and 400 mg/kg/day. All dams were subjected to caesarean section on gestational day 20, and all the fetuses were examined for external, visceral, and skeletal alterations. Toxicity in the dams manifested as significantly decreased body weight at 400 mg/kg/day and decreased liver weight, and increased adrenal glands weight at 200 mg/kg/day and 400 mg/kg/day. However, no treatment-related difference in the number of corpora lutea, the number of implantation sites, the implantation rate (%), resorption, dead fetuses, litter size, fetal deaths, fetal and placental weights, and sex ratio were observed between the groups. Morphological examinations of the fetuses demonstrated no significant difference in the incidences of abnormalities between the groups. No significant difference was found in the Zn content of fetal tissue between the control and high-dose groups. These results showed that a 15-day repeated oral dose of ZnO(SM20(-)) was minimally maternotoxic at dose of 200 mg/kg/day and 400 mg/kg/day.


Assuntos
Desenvolvimento Fetal/efeitos dos fármacos , Nanopartículas Metálicas , Óxido de Zinco , Animais , Feminino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Gravidez , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química , Óxido de Zinco/toxicidade
17.
Int J Nanomedicine ; 9 Suppl 2: 159-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565834

RESUMO

This study investigated the potential adverse effects of zinc oxide nanoparticles ([ZnO(SM20(+)) NPs] zinc oxide nanoparticles, positively charged, 20 nm) on pregnant dams and embryo-fetal development after maternal exposure over the period of gestational days 5-19 with Sprague-Dawley rats. ZnO(SM20(+)) NPs were administered to pregnant rats by gavage at 0, 100, 200, and 400 mg/kg/day. All dams were subjected to a cesarean section on gestational day 20, and all of the fetuses were examined for external, visceral, and skeletal alterations. Toxicity in the dams manifested as significantly decreased body weight after administration of 400 mg/kg/day NPs; reduced food consumption after administration of 200 and 400 mg/kg/day NPs; and decreased liver weight and increased adrenal glands weight after administration of 400 mg/kg/day NPs. However, no treatment-related difference in: number of corpora lutea; number of implantation sites; implantation rate (%); resorption; dead fetuses; litter size; fetal deaths and placental weights; and sex ratio were observed between the groups. On the other hand, significant decreases between treatment groups and controls were seen for fetal weights after administration of 400 mg/kg/day NPs. Morphological examinations of the fetuses demonstrated significant differences in incidences of abnormalities in the group administered 400mg/kg/day. Meanwhile, no significant difference was found in the Zn content of fetal tissue between the control and high-dose groups. These results showed that oral doses for the study with 15-days repeated of ZnO(SM20(+)) NPs were maternotoxic in the 200 mg/kg/day group, and embryotoxic in the 400 mg/kg/day group.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Nanopartículas Metálicas , Óxido de Zinco , Animais , Feminino , Fígado/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Gravidez , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química , Óxido de Zinco/toxicidade
18.
Int J Nanomedicine ; 9 Suppl 2: 183-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565836

RESUMO

Silicon dioxide (SiO2) nanoparticles (NPs) have been widely used in the biomedical field, such as in drug delivery and gene therapy. However, little is known about the biological effects and potential hazards of SiO2. Herein, the colloidal SiO2 NPs with two different sizes (20 nm and 100 nm) and different charges (L-arginine modified: SiO2 (EN20[R]), SiO2 (EN100[R]); and negative: SiO2 (EN20[-]), SiO2 (EN100[-]) were orally administered (750 mg/kg/day) in female C57BL/6 mice for 14 days. Assessments of immunotoxicity include hematology profiling, reactive oxygen species generation and their antioxidant effect, stimulation assays for B- and T-lymphocytes, the activity of natural killer (NK) cells, and cytokine profiling. In vitro toxicity was also investigated in the RAW 264.7 cell line. When the cellularity of mouse spleen was evaluated, there was an overall decrease in the proliferation of B- and T-cells for all the groups fed with SiO2 NPs. Specifically, the SiO2 (EN20(-)) NPs showed the most pronounced reduction. In addition, the nitric oxide production and NK cell activity in SiO2 NP-fed mice were significantly suppressed. Moreover, there was a decrease in the serum concentration of inflammatory cytokines such as interleukin (IL)-1ß, IL-12 (p70), IL-6, tumor necrosis factor-α, and interferon-γ. To elucidate the cytotoxicity mechanism of SiO2 in vivo, an in vitro study using the RAW 264.7 cell line was performed. Both the size and charge of SiO2 using murine macrophage RAW 264.7 cells decreased cell viability dose-dependently. Collectively, our data indicate that different sized and charged SiO2 NPs would cause differential immunotoxicity. Interestingly, the small-sized and negatively charged SiO2 NPs showed the most potent in vivo immunotoxicity by way of suppressing the proliferation of lymphocytes, depressing the killing activity of NK cells, and decreasing proinflammatory cytokine production, thus leading to immunosuppression.


Assuntos
Citocinas/sangue , Nanopartículas , Dióxido de Silício , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/toxicidade , Tamanho da Partícula , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Eletricidade Estática , Testes de Toxicidade
19.
Int J Nanomedicine ; 9 Suppl 2: 173-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565835

RESUMO

BACKGROUND: Silica dioxide (SiO2) has been used in various industrial products, including paints and coatings, plastics, synthetic rubbers, and adhesives. Several studies have investigated the genotoxic effects of SiO2; however, the results remain controversial due to variations in the evaluation methods applied in determining its physicochemical properties. Thus, well characterized chemicals and standardized methods are needed for better assessment of the genotoxicity of nanoparticles. METHODS: The genotoxicity of SiO2 was evaluated using two types of well characterized SiO2, ie, 20 nm (-) charge (SiO (EN20(-))2) and 100 nm (-) charge (SiO (EN100(-))2). Four end point genotoxicity tests, ie, the bacterial mutation assay, in vitro chromosomal aberration test, in vivo comet assay, and in vivo micronucleus test, were conducted following the test guidelines of the Organization for Economic Cooperation and Development (OECD) with application of Good Laboratory Practice. RESULTS: No statistically significant differences were found in the bacterial mutation assay, in vitro chromosomal aberration test, in vivo comet assay, and in vivo micronucleus test when tested for induction of genotoxicity in both two types of SiO2 nanoparticles. CONCLUSION: These results suggest that SiO2 nanoparticles, in particular SiO2 (EN20(-)) and SiO2 (EN100(-)), are not genotoxic in both in vitro and in vivo systems under OECD guidelines. Further, the results were generated in accordance with OECD test guidelines, and Good Laboratory Practice application; it can be accepted as reliable information regarding SiO2-induced genotoxicity.


Assuntos
Testes de Mutagenicidade , Nanopartículas , Dióxido de Silício , Animais , Bactérias/efeitos dos fármacos , Linhagem Celular , Cricetinae , Dano ao DNA/efeitos dos fármacos , Nanopartículas/análise , Nanopartículas/toxicidade , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/análise , Dióxido de Silício/toxicidade
20.
Int J Nanomedicine ; 9 Suppl 2: 195-205, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565837

RESUMO

While zinc oxide (ZnO) nanoparticles (NPs) have been recognized to have promising applications in biomedicine, their immunotoxicity has been inconsistent and even contradictory. To address this issue, we investigated whether ZnO NPs with different size (20 or 100 nm) and electrostatic charge (positive or negative) would cause immunotoxicity in vitro and in vivo, and explored their underlying molecular mechanism. Using Raw 264.7 cell line, we examined the immunotoxicity mechanism of ZnO NPs as cell viability. We found that in a cell viability assay, ZnO NPs with different size and charge could induce differential cytotoxicity to Raw 264.7 cells. Specifically, the positively charged ZnO NPs exerted higher cytotoxicity than the negatively charged ones. Next, to gauge systemic immunotoxicity, we assessed immune responses of C57BL/6 mice after oral administration of 750 mg/kg/day dose of ZnO NPs for 2 weeks. In parallel, ZnO NPs did not alter the cell-mediated immune response in mice but suppressed innate immunity such as natural killer cell activity. The CD4(+)/CD8(+) ratio, a marker for matured T-cells was slightly reduced, which implies the alteration of immune status induced by ZnO NPs. Accordingly, nitric oxide production from splenocyte culture supernatant in ZnO NP-fed mice was lower than control. Consistently, serum levels of pro/anti-inflammatory (interleukin [IL]-1ß, tumor necrosis factor-α, and IL-10) and T helper-1 cytokines (interferon-γ and IL-12p70) in ZnO NP-fed mice were significantly suppressed. Collectively, our results indicate that different sized and charged ZnO NPs would cause in vitro and in vivo immunotoxicity, of which nature is an immunosuppression.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/sangue , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Eletricidade Estática , Testes de Toxicidade , Óxido de Zinco/química , Óxido de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA