Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 34(3): 654-662, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38213301

RESUMO

To investigate the effect of the predominant fungal species from Korean traditional meju and doenjang on soybean fermentation, the enzymatic activity and amino acid production of twenty-two fungal strains were assessed through solid- and liquid-state soybean fermentation. Enzymatic activity analyses of solid-state fermented soybeans revealed different enzyme activities involving protease, leucine aminopeptidase (LAP), carboxypeptidase (CaP), glutaminase, γ-glutamyl transferase (GGT), and amylase, depending on the fungal species. These enzymatic activities significantly affected the amino acid profile throughout liquid-state fermentation. Strains belonging to Mucoromycota, including Lichtheimia, Mucor, Rhizomucor, and Rhizopus, produced smaller amounts of total amino acids and umami-producing amino acids, such as glutamic acid and aspartic acid, than strains belonging to Aspergillus subgenus circumdati. The genera Penicillium and Scopulariopsis produced large amounts of total amino acids and glutamic acid, suggesting that these genera play an essential role in producing umami and kokumi tastes in fermented soybean products. Strains belonging to Aspergillus subgenus circumdati, including A. oryzae, showed the highest amino acid content, including glutamic acid, suggesting the potential benefits of A. oryzae as a starter for soybean fermentation. This study showed the potential of traditional meju strains as starters for soybean fermentation. However, further analysis of processes such as the production of G-peptide for kokumi taste and volatile compounds for flavor and safety is needed.


Assuntos
Aminoácidos , Alimentos de Soja , Aminoácidos/metabolismo , Alimentos de Soja/microbiologia , Glycine max , Fermentação , Fungos , Aspergillus/metabolismo , Ácido Glutâmico/metabolismo , Peptídeo Hidrolases/metabolismo
2.
ACS Synth Biol ; 6(9): 1766-1773, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28524655

RESUMO

Most inducible expression systems suffer from growth defects, leaky basal induction, and inhomogeneous expression levels within a host cell population. These difficulties are most prominent with the overproduction of membrane proteins that are toxic to host cells. Here, we developed an Escherichia coli inducible expression system for membrane protein production based on titrated expression of a mutant lac repressor (mLacI). Performance of the mLacI inducible system was evaluated in conjunction with commonly used lac operator-based expression vectors using a T7 or tac promoter. Remarkably, expression of a target gene can be titrated by the dose-dependent addition of l-rhamnose, and the expression levels were homogeneous in the cell population. The developed system was successfully applied to overexpress three membrane proteins that were otherwise difficult to produce in E. coli. This gene expression control system can be easily applied to a broad range of existing protein expression systems and should be useful in constructing genetic circuits that require precise output signals.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Melhoramento Genético/métodos , Repressores Lac/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Vetores Genéticos/genética , Mutação/genética , Regulação para Cima/genética
3.
J Microbiol Biotechnol ; 23(3): 304-12, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23462002

RESUMO

The thermotolerant methylotrophic yeast Hansenula polymorpha is attracting interest as a potential strain for the production of recombinant proteins and biofuels. However, only limited numbers of genome engineering tools are currently available for H. polymorpha. In the present study, we identified the HpPOL3 gene encoding the catalytic subunit of DNA polymerase δ of H. polymorpha and mutated the sequence encoding conserved amino acid residues that are important for its proofreading 3'-->5' exonuclease activity. The resulting HpPOL3* gene encoding the error-prone proofreading-deficient DNA polymerase δ was cloned under a methanol oxidase promoter to construct the mutator plasmid pHIF8, which also contains additional elements for site-specific chromosomal integration, selection, and excision. In a H. polymorpha mutator strain chromosomally integrated with pHIF8, a URA3(-) mutant resistant to 5-fluoroorotic acid was generated at a 50-fold higher frequency than in the wild-type strain, due to the dominant negative expression of HpPOL3*. Moreover, after obtaining the desired mutant, the mutator allele was readily removed from the chromosome by homologous recombination to avoid the uncontrolled accumulation of additional mutations. Our mutator system, which depends on the accumulation of random mutations that are incorporated during DNA replication, will be useful to generate strains with mutant phenotypes, especially those related to unknown or multiple genes on the chromosome.


Assuntos
Genética Microbiana/métodos , Biologia Molecular/métodos , Mutagênese , Pichia/genética , Sequência de Aminoácidos , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Exonucleases/genética , Exonucleases/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Taxa de Mutação , Plasmídeos , Regiões Promotoras Genéticas , Alinhamento de Sequência
4.
Bioprocess Biosyst Eng ; 36(10): 1509-18, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23380941

RESUMO

The thermotolerant methylotrophic yeast Hansenula polymorpha is able to grow at elevated temperature up to 48 °C as one of a few yeast strains which are naturally capable of alcoholic fermentation of xylose, a pentose sugar abundant in lignocellulosic biomass. However, the current level of ethanol production from xylose by H. polymorpha is still very low compared to those of other xylose-fermenting strains. Therefore, it is necessary to analyze and remodel the xylose metabolism in H. polymorpha at the whole genome level to identify and overcome these limits. In the present study, the transcriptomes of H. polymorpha grown on xylose were compared with those of glucose-grown cells under both aerobic and microaerobic conditions. Approximately, two percent of H. polymorpha genes were either up- or down-regulated by more than two-fold during the growth on xylose. The majority of the up-regulated genes were involved in metabolism. Some genes involved in xylose metabolism, such as XYL1, XYL2, and TAL1 were also up-regulated, despite the fact that the differences in their induction level were only about three-fold. On the other hand, the majority of the down-regulated genes were involved in metabolism and cellular transport. Interestingly, some genes involved in glycolysis and ethanol fermentation were also repressed during growth on xylose, suggesting that these genes are good targets for engineering H. polymorpha to improve xylose fermentation.


Assuntos
Adaptação Fisiológica , Temperatura Alta , Pichia/metabolismo , Transcriptoma , Xilose/metabolismo , Sequência de Bases , Primers do DNA , DNA Complementar/genética , Fermentação , Expressão Gênica , Genes Fúngicos , Hibridização de Ácido Nucleico , Pichia/genética , Pichia/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
5.
J Microbiol ; 50(4): 665-72, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22923117

RESUMO

In this study, the putative target genes of the Arc two-component system of the rumen bacterium Mannheimia succiniciproducens were determined by analyzing the transcriptome of the ArcA overexpression strain and by the in silico scanning of the entire genome sequence with the position weight matrix of the ArcA binding sequence developed for Escherichia coli. The majority of 79 repressed genes were involved in energy metabolism and carbohydrate transport and metabolism, while the majority of 82 induced genes were involved in hypothetical or unknown functions. Our results suggest that the Arc system in M. succiniciproducens has a specific function that differs from that in E. coli.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Mannheimia/genética , Regulon , Proteínas Repressoras/genética , Transativadores/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biologia Computacional/métodos , Escherichia coli/genética , Dosagem de Genes , Perfilação da Expressão Gênica , Proteínas Repressoras/metabolismo , Transativadores/metabolismo
6.
Appl Microbiol Biotechnol ; 96(3): 697-709, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22249723

RESUMO

In this study, we identified and characterized mitochondrial alcohol dehydrogenase 3 from the thermotolerant methylotrophic yeast Hansenula polymorpha (HpADH3). The amino acid sequence of HpADH3 shares over 70% of its identity with the alcohol dehydrogenases of other yeasts and exhibits the highest similarity of 91% with the alcohol dehydrogenase 1 of H. polymorpha. However, unlike the cytosolic HpADH1, HpADH3 appears to be a mitochondrial enzyme, as a mitochondrial targeting extension exists at its N terminus. The recombinant HpADH3 overexpressed in Escherichia coli showed similar catalytic efficiencies for ethanol oxidation and acetaldehyde reduction. The HpADH3 displayed substrate specificities with clear preferences for medium chain length primary alcohols and acetaldehyde for an oxidation reaction and a reduction reaction, respectively. Although the H. polymorpha ADH3 gene was induced by ethanol in the culture medium, both an ADH isozyme pattern analysis and an ADH activity assay indicated that HpADH3 is not the major ADH in H. polymorpha DL-1. Moreover, HpADH3 deletion did not affect the cell growth on different carbon sources. However, when the HpADH3 mutant was complemented by an HpADH3 expression cassette fused to a strong constitutive promoter, the resulting strain produced a significantly increased amount of ethanol compared to the wild-type strain in a glucose medium. In contrast, in a xylose medium, the ethanol production was dramatically reduced in an HpADH3 overproduction strain compared to that in the wild-type strain. Taken together, our results suggest that the expression of HpADH3 would be an ideal engineering target to develop H. polymorpha as a substrate specific bioethanol production strain.


Assuntos
Álcool Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Pichia/enzimologia , Acetaldeído/metabolismo , Álcool Desidrogenase/genética , Clonagem Molecular , Meios de Cultura/química , DNA Fúngico/química , DNA Fúngico/genética , Escherichia coli/genética , Etanol/metabolismo , Deleção de Genes , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Oxirredução , Pichia/genética , Pichia/crescimento & desenvolvimento , Pichia/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA