Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 150: 107603, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968905

RESUMO

Inhibition of LSD1 was proposed as promising and attractive therapies for treating osteoporosis. Here, we synthesized a series of novel TCP-(MP)-Caffeic acid analogs as potential LSD1 inhibitors to assess their inhibitory effects on osteoclastogenesis by using TRAP-staining assay and try to explore the preliminary SAR. Among them, TCP-MP-CA (11a) demonstrated osteoclastic bone loss both in vitro and in vivo, showing a significant improvement in the in vivo effects compared to the LSD1 inhibitor GSK-LSD1. Additionally, we elucidated a mechanism that 11a and its precursor that 11e directly bind to LSD1/CoREST complex through FAD to inhibit LSD1 demethylation activity and influence its downstream IκB/NF-κB signaling pathway, and thus regulate osteoclastic bone loss. These findings suggested 11a or 11e as potential novel candidates for treating osteoclastic bone loss, and a concept for further development of TCP-(MP)-Caffeic acid analogs for therapeutic use in osteoporosis clinics.

2.
J Med Chem ; 66(10): 6766-6781, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37151031

RESUMO

To discover a potent candidate for suppressing mature osteoclasts formation in vitro using a TRAP staining assay. A series of PMSA derivatives were synthesized and evaluated for their bioactivity in our current study. Our results showed that PMSA derivative 11 exhibited the most promising bioactivity, with an IC50 value of 322.9 nM, which was ∼15-fold better than PMSA-3-Ac in suppressing osteoclastogenesis in vitro. Additionally, 11 blocked the formation of F-action belts and bone resorption in a concentration-dependent manner. Mechanistically, 11 decreased the expression of genes required for osteoclastogenesis by blocking NFATc1 translocation from the cytoplasm to nucleus. Furthermore, 11 demonstrated a therapeutic inhibitory effect on the differentiation of human iPSC-derived primary osteoclasts. In vivo investigation showed that 11 prevented excessive osteoclastogenesis-mediated bone loss in ovariectomized osteoporosis mimic mice. These findings highlighted the therapeutic potential of 11 as a lead compound for anti-osteoporosis by targeting NFATc1 translocation.


Assuntos
Reabsorção Óssea , Osteoporose , Camundongos , Animais , Humanos , Osteoclastos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Osteoporose/tratamento farmacológico , Osteogênese , Fatores de Transcrição/metabolismo , Ligante RANK/metabolismo , Diferenciação Celular , Fatores de Transcrição NFATC/metabolismo
3.
Cells ; 12(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36766812

RESUMO

Previously, we reported that an inverse agonist of estrogen-related receptor gamma (ERRγ), GSK5182, enhances sodium iodide (Na+/I-) symporter (NIS) function through mitogen-activated protein (MAP) kinase signaling in anaplastic thyroid cancer cells. This finding helped us to further investigate the effects of GSK5182 on NIS function in papillary thyroid cancer (PTC) refractory to radioactive iodine (RAI) therapy. Herein, we report the effects of ERRγ on the regulation of NIS function in RAI-resistant PTC cells using GSK5182. RAI-refractory BCPAP cells were treated with GK5182 for 24 h at various concentrations, and radioiodine avidity was determined with or without potassium perchlorate (KClO4) as an NIS inhibitor. We explored the effects of GSK5182 on ERRγ, the mitogen-activated protein (MAP) kinase pathway, and iodide metabolism-related genes. We examined whether the MAP pathway affected GSK5182-mediated NIS function using U0126, a selective MEK inhibitor. A clonogenic assay was performed to evaluate the cytotoxic effects of I-131. GSK5182 induced an increase in radioiodine avidity in a dose-dependent manner, and the enhanced uptake was completely inhibited by KClO4 in BCPAP cells. We found that ERRγ was downregulated and phosphorylated extracellular signal-regulated kinase (ERK)1/2 was upregulated in BCPAP cells, with an increase in total and membranous NIS and iodide metabolism-related genes. MEK inhibitors reversed the increase in radioiodine avidity induced by GSK5182. Clonogenic examination revealed the lowest survival in cells treated with a combination of GSK5182 and I-131 compared to those treated with either GSK518 or I-131 alone. We demonstrate that an inverse agonist of ERRγ, GSK5182, enhances the function of NIS protein via the modulation of ERRγ and MAP kinase signaling, thereby leading to increased responsiveness to radioiodine in RAI-refractory papillary thyroid cancer cells.


Assuntos
Simportadores , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/metabolismo , Radioisótopos do Iodo/uso terapêutico , Câncer Papilífero da Tireoide/tratamento farmacológico , Câncer Papilífero da Tireoide/radioterapia , Iodetos/metabolismo , Agonismo Inverso de Drogas , Mitógenos , Simportadores/genética , Simportadores/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Estrogênios
4.
Biomaterials ; 289: 121783, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084486

RESUMO

While conventional approaches for PTEN-loss cancers mainly focus on turning off growth promoting process through modulation of PI3K/AKT pathways, no effective therapeutic treatments that target PTEN-loss cancer cells have yielded results. Moreover, conventional targeted therapies, which are potent against only a subset of cancer cells with limited specificity, bring on temporary response. Here, we report the development of albumin-binding caspase-3 cleavable peptide-drug conjugate (PDC), which utilizes the enhanced albumin metabolism pathway in PTEN-loss cancer cells to enhance the intracellular delivery of chemotherapeutic payload that could exert a bystander killing effect. Albumin metabolism-mediated apoptosis triggered expression of caspase-3 allows the continuous activation of the PDC, accumulation of payloads, sustained upregulation of tumoral caspase-3, and intensified in-situ apoptosis. Importantly, PDC strategy exerts potent therapeutic efficacy against PTEN-loss metastatic triple-negative breast cancer, the highly aggressive and heterogenous nature of which remains a challenge conventional targeted therapies need to overcome. This study thus presents a conceptually novel approach to treat PTEN-loss cancer and creates new translational perspectives of exploiting PTEN-loss for providing an avenue to advance current targeted therapy.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Albuminas , Caspase 3 , Linhagem Celular Tumoral , Feminino , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Peptídeos , Preparações Farmacêuticas , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
5.
Drug Deliv ; 28(1): 2373-2382, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34747271

RESUMO

PURPOSE: To evaluate the enhancement of temozolomide (TMZ) delivery in the rat brain using a triolein emulsion. MATERIALS AND METHODS: Rats were divided into the five groups as following: group 1 (negative control), group 2 (treated with triolein emulsion and TMZ 20 mg/kg), and group 3 (TMZ 20 mg/kg treatment without triolein), group 4 (treated with triolein emulsion and TMZ 10 mg/kg), and group 5 (TMZ 10 mg/kg treatment without triolein). Triolein emulsion was infused into the right common carotid artery. One hour later, the TMZ concentration was evaluated quantitatively and qualitatively using high-performance liquid chromatography (HPLC-MS) and desorption electrospray ionization mass spectrometry (DESI-MS) imaging, respectively. The concentration ratios of the ipsilateral to contralateral hemisphere in each group were determined and the statistical analysis was conducted using an unpaired t-test. RESULTS: Quantitatively, the TMZ concentration ratio of the ipsilateral to the control hemisphere was 2.41 and 1.13 in groups 2 and 3, and were 2.49 and 1.14 in groups 4 and 5, respectively. Thus, the TMZ signal intensities of TMZ in group 2 and 4 were statistically high in the ipsilateral hemispheres. Qualitatively, the signal intensity of TMZ was remarkably high in the ipsilateral hemisphere in group 2 and 4. CONCLUSIONS: The triolein emulsion efficiently opened the blood-brain barrier and could provide a potential new strategy to enhance the therapeutic effect of TMZ. HPLC-MS and DESI-MS imaging were shown to be suitable for analyses of enhancement of brain TMZ concentrations.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Emulsões/química , Temozolomida/administração & dosagem , Trioleína/química , Animais , Antineoplásicos Alquilantes/farmacocinética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Química Farmacêutica , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Temozolomida/farmacocinética
6.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341129

RESUMO

PURPOSE: Here, this study verifies that cancer-associated thrombosis (CAT) accelerates hypoxia, which is detrimental to the tumor immune microenvironment by limiting tumor perfusion. Therefore, we designed an oral anticoagulant therapy to improve the immunosuppressive tumor microenvironment and potentiate the efficacy of immunotherapy by alleviating tumor hypoxia. EXPERIMENTAL DESIGN: A novel oral anticoagulant (STP3725) was developed to consistently prevent CAT formation. Tumor perfusion and hypoxia were analyzed with or without treating STP3725 in wild-type and P selectin knockout mice. Immunosuppressive cytokines and cells were analyzed to evaluate the alteration of the tumor microenvironment. Effector lymphocyte infiltration in tumor tissue was assessed by congenic CD45.1 mouse lymphocyte transfer model with or without anticoagulant therapy. Finally, various tumor models including K-Ras mutant spontaneous cancer model were employed to validate the role of the anticoagulation therapy in enhancing the efficacy of immunotherapy. RESULTS: CAT was demonstrated to be one of the perfusion barriers, which fosters immunosuppressive microenvironment by accelerating tumor hypoxia. Consistent treatment of oral anticoagulation therapy was proved to promote tumor immunity by alleviating hypoxia. Furthermore, this resulted in decrease of both hypoxia-related immunosuppressive cytokines and myeloid-derived suppressor cells while improving the spatial distribution of effector lymphocytes and their activity. The anticancer efficacy of αPD-1 antibody was potentiated by co-treatment with STP3725, also confirmed in various tumor models including the K-Ras mutant mouse model, which is highly thrombotic. CONCLUSIONS: Collectively, these findings establish a rationale for a new and translational combination strategy of oral anticoagulation therapy with immunotherapy, especially for treating highly thrombotic cancers. The combination therapy of anticoagulants with immunotherapies can lead to substantial improvements of current approaches in the clinic.


Assuntos
Anticoagulantes/uso terapêutico , Hipóxia Celular/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Imunoterapia/métodos , Animais , Anticoagulantes/farmacologia , Humanos , Camundongos , Microambiente Tumoral
7.
ACS Appl Bio Mater ; 4(2): 1508-1514, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014500

RESUMO

The development of reliable methods to diagnose acute kidney injury is essential to allow the adoption of early therapeutic interventions and evaluate their effectiveness. Based on the fact that kidney injury molecule-1 (KIM-1) expression levels in kidneys are markedly upregulated early after a damage event, here we developed a noninvasive KIM-1-based molecular imaging technique to detect kidney injury. First, we took advantage of a phage-display platform to select small peptides demonstrating a specific high binding affinity to KIM-1. The promising candidate was conjugated with fluorescent probes, and its imaging potential was validated in vitro and in vivo. This peptide, with the sequence CNRRRA, not only showed a high imaging potential in vitro, allowing a strong detection of KIM-1 expressing cells by microscopy and flow cytometry but also generated a strong kidney-specific signal in live-imaging in vivo experiments in the context of a drug-induced kidney-injury mouse model. Our data overall suggest that the CNRRRA peptide is a promising probe to use in the context of in vivo imaging for the detection of KIM-1 overexpression in damaged kidneys.


Assuntos
Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/genética , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Peptídeos/metabolismo , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
8.
Nanotheranostics ; 4(2): 57-70, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190533

RESUMO

In order to improve clinical outcomes for novel drug delivery systems, distinct optimization of size, shape, multifunctionality, and site-specificity are of utmost importance. In this study, we designed various multivalent elastin-like polypeptide (ELP)-based tumor-targeting polymers in which multiple copies of IL-4 receptor (IL-4R)-targeting ligand (AP1 peptide) were periodically incorporated into the ELP polymer backbone to enhance the affinity and avidity towards tumor cells expressing high levels of IL-4R. Several ELPs with different molecular sizes and structures ranging from unimer to micelle-forming polymers were evaluated for their tumor accumulation as well as in vivo bio-distribution patterns. Different percentages of cell binding and uptake were detected corresponding to polymer size, number of targeting peptides, or unimer versus micelle structure. As compared to low molecular weight polypeptides, high molecular weight AP1-ELP showed superior binding activity with faster entry and efficient processing in the IL-4R-dependent endocytic pathway. In addition, in vivo studies revealed that the high molecular weight micelle-forming AP1-ELPs (A86 and A100) displayed better tumor penetration and extensive retention in tumor tissue along with reduced non-specific accumulation in vital organs, when compared to low molecular weight non-micelle forming AP1-ELPs. It is suggested that the superior binding activities shown by A86 and A100 may depend on the multiple presentation of ligands upon transition to a micelle-like structure rather than a larger molecular weight. Thus, this study has significance in elucidating the different patterns underlying unimer and micelle-forming ELP-mediated tumor targeting as well as the in vivo biodistribution.


Assuntos
Antineoplásicos , Portadores de Fármacos , Elastina , Neoplasias/metabolismo , Peptídeos , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Elastina/química , Elastina/metabolismo , Elastina/farmacocinética , Feminino , Humanos , Camundongos Endogâmicos BALB C , Micelas , Peso Molecular , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacocinética , Conformação Proteica , Receptores de Interleucina-4/química , Receptores de Interleucina-4/metabolismo , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
9.
PLoS One ; 14(11): e0225095, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31743348

RESUMO

OBJECTIVE: This study aimed to develop a new oral paclitaxel formulation (DHP23002) and to evaluate its absorption and antitumor effects in a pancreatic tumor mouse model. METHODS: To investigate the oral absorption of DHP23002, a newly developed lipid-based orally active paclitaxel formulation, a pharmacokinetic study of DHP23002, was conducted in mice (62.5 and 125 mg/kg). Moreover, to evaluate the antitumor effect of DHP23002 in pancreatic cancer treatment, the drug was administered to female athymic nude mice at 0 (vehicle), 25, 62.5, and 125 mg/kg on alternate days; the efficacy of the agent was compared with the efficacy of intravenous Taxol® injections at 10 mg/kg once per week. After 3 weeks of administration, tumor growth in mice belonging to each group was further monitored for 4 weeks after discontinuing medication. Moreover, to examine paclitaxel (DHP23002) accumulation in the tumor tissue, the amount of paclitaxel in tumor/blood was quantified using liquid chromatography with quadruple-TOF mass spectrometry. RESULTS: In the mouse pharmacokinetic study, oral Taxol® showed a negligible absorption, whereas DHP23002 showed a high absorption rate dependent on dosage, with a bioavailability of approximately 40% at a dose of 62.5 mg/kg. In efficacy-related studies, DHP23002 administration at a dose of 25, 62.5, or 125 mg/kg on alternate days for 3 weeks showed a superior tumor inhibitory effect of 80%, 92%, and 97% in a xenograft mouse model, respectively, after 7 weeks. Paclitaxel accumulation in tumors persisted for >24 h in mice, when orally administered once at doses of 25, 62.5, and 125 mg/kg DHP23002. CONCLUSION: Oral chemotherapy with DHP23002 showed excellent absorption in animals owing to a strong antitumor activity in a pancreatic cancer mouse model. This demonstrates that paclitaxel is largely distributed and persists for a prolonged period at the tumor site owing to oral DHP23002 administration.


Assuntos
Composição de Medicamentos , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Administração Oral , Animais , Linhagem Celular Tumoral , Feminino , Fluorescência , Humanos , Camundongos Nus , Paclitaxel/sangue , Paclitaxel/farmacocinética , Neoplasias Pancreáticas/patologia , Tubulina (Proteína)/metabolismo
10.
J Mater Chem B ; 7(46): 7326-7331, 2019 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-31681930

RESUMO

Structure-based targeting of fluorescent dyes is essential for their use as imaging agents for disease diagnosis. Here, we describe the development of the benzoquinolizinium compound Medical fluorophore 1 (MF1) as a novel biomedical imaging agent that allows the visualization of inflammation by virtue of its unique chemical structure. Lipopolysaccharide treatment stimulated the uptake of MF1 by bone marrow-derived macrophages, with no adverse effects on cell proliferation. In vivo fluorescence lifetime imaging revealed the accumulation of MF1 in carrageenan-induced acute inflammatory lesions in mice, which peaked at 6 h. MF1-based imaging also allowed monitoring of the response to the anti-inflammatory drugs dexamethasone and sulfasalazine. Thus, MF1 can be used to diagnose diseases characterized by inflammation as well as treatment efficacy.


Assuntos
Corantes Fluorescentes/química , Compostos de Amônio Quaternário/química , Animais , Anti-Inflamatórios/farmacologia , Proliferação de Células , Citocinas/metabolismo , Dexametasona/farmacologia , Fibroblastos/efeitos dos fármacos , Humanos , Inflamação , Lipopolissacarídeos/química , Macrófagos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Microscopia Confocal , Sulfassalazina/farmacologia
11.
J Med Chem ; 62(17): 8194-8234, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31398033

RESUMO

With the aim of developing new effective topoisomerase IIα-targeted anticancer agents, we synthesized a series of hydroxy- and halogenated 2,4-diphenyl indeno[1,2-b]pyridinols using a microwave-assisted single step synthetic method and investigated structure-activity relationships. The majority of compounds with chlorophenyl group at 2-position and phenol group at the 4-position of indeno[1,2-b]pyridinols exhibited potent antiproliferative activity and topoisomerase IIα-selective inhibition. Of the 172 compounds tested, 89 showed highly potent and selective topoisomerase IIα inhibition and antiproliferative activity in the nanomolar range against human T47D breast (2.6 nM) cancer cell lines. In addition, mechanistic studies revealed compound 89 is a nonintercalative topoisomerase II poison, and in vitro studies showed it had promising cytotoxic effects in diverse breast cancer cell lines and was particularly effective at inducing apoptosis in T47D cells. Furthermore, in vivo administration of compound 89 had significant antitumor effects in orthotopic mouse model of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Neoplasias da Mama/tratamento farmacológico , DNA Topoisomerases Tipo II/metabolismo , Descoberta de Drogas , Piridinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Masculino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos ICR , Micro-Ondas , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
12.
Clin Cancer Res ; 25(16): 5069-5081, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31010838

RESUMO

PURPOSE: New strategies to restore sodium iodide symporter (NIS) expression and function in radioiodine therapy-refractive anaplastic thyroid cancers (ATCs) are urgently required. Recently, we reported the regulatory role of estrogen-related receptor gamma (ERRγ) in ATC cell NIS function. Herein, we identified DN200434 as a highly potent (functional IC50 = 0.006 µmol/L), selective, and orally available ERRγ inverse agonist for NIS enhancement in ATC. EXPERIMENTAL DESIGN: We sought to identify better ERRγ-targeting ligands and explored the crystal structure of ERRγ in complex with DN200434. After treating ATC cells with DN200434, the change in iodide-handling gene expression, as well as radioiodine avidity was examined. ATC tumor-bearing mice were orally administered with DN200434, followed by 124I-positron emission tomography/CT (PET/CT). For radioiodine therapy, ATC tumor-bearing mice treated with DN200434 were administered 131I (beta ray-emitting therapeutic radioiodine) and then bioluminescent imaging was performed to monitor the therapeutic effects. Histologic analysis was performed to evaluate ERRγ expression status in normal tissue and ATC tissue, respectively. RESULTS: DN200434-ERRγ complex crystallographic studies revealed that DN200434 binds to key ERRγ binding pocket residues through four-way interactions. DN200434 effectively upregulated iodide-handling genes and restored radioiodine avidity in ATC tumor lesions, as confirmed by 124I-PET/CT. DN200434 enhanced ATC tumor radioiodine therapy susceptibility, markedly inhibiting tumor growth. Histologic findings of patients with ATC showed higher ERRγ expression in tumors than in normal tissue, supporting ERRγ as a therapeutic target for ATC. CONCLUSIONS: DN200434 shows potential clinical applicability for diagnosis and treatment of ATC or other poorly differentiated thyroid cancers.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Simportadores/genética , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Inibidores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Cães , Metabolismo Energético , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Microssomos Hepáticos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ligação Proteica , Ratos , Receptores de Estrogênio/química , Relação Estrutura-Atividade , Simportadores/química , Simportadores/metabolismo , Carcinoma Anaplásico da Tireoide/diagnóstico , Carcinoma Anaplásico da Tireoide/tratamento farmacológico
13.
Nanomicro Lett ; 11(1): 36, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34137977

RESUMO

Plasmonic nanostructure-mediated photothermal therapy (PTT) has proven to be a promising approach for cancer treatment, and new approaches for its effective delivery to tumor lesions are currently being developed. This study aimed to assess macrophage-mediated delivery of PTT using radioiodine-124-labeled gold nanoparticles with crushed gold shells (124I-Au@AuCBs) as a theranostic nanoplatform. 124I-Au@AuCBs exhibited effective photothermal conversion effects both in vitro and in vivo and were efficiently taken up by macrophages without cytotoxicity. After the administration of 124I-Au@AuCB-labeled macrophages to colon tumors, intensive signals were observed at tumor lesions, and subsequent in vivo PTT with laser irradiation yielded potent antitumor effects. The results indicate the considerable potential of 124I-Au@AuCBs as novel theranostic nanomaterials and the prominent advantages of macrophage-mediated cellular therapies in treating cancer and other diseases.

14.
Cancer Res Treat ; 51(3): 861-875, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30282451

RESUMO

PURPOSE: This study was carried out to identify a peptide that selectively binds to kidney injury molecule-1 (KIM-1) by screening a phage-displayed peptide library and to use the peptide for the detection of KIM-1overexpressing tumors in vivo. MATERIALS AND METHODS: Biopanning of a phage-displayed peptide library was performed on KIM-1-coated plates. The binding of phage clones, peptides, and a peptide multimer to the KIM-1 protein and KIM-1-overexpressing and KIM-1-low expressing cells was examined by enzyme-linked immunosorbent assay, fluorometry, and flow cytometry. A biotin-peptide multimer was generated using NeutrAvidin. In vivo homing of the peptide to KIM-1-overexpressing and KIM1-low expressing tumors in mice was examined by whole-body fluorescence imaging. RESULTS: A phage clone displaying the CNWMINKEC peptide showed higher binding affinity to KIM-1 and KIM-1-overexpressing 769-P renal tumor cells compared to other phage clones selected after biopanning. The CNWMINKEC peptide and a NeutrAvidin/biotin-CNWMINKEC multimer selectively bound to KIM-1 over albumin and to KIM-1-overexpressing 769-P cells and A549 lung tumor cells compared to KIM-1-low expressing HEK293 normal cells. Co-localization and competition assays using an anti-KIM-1 antibody demonstrated that the binding of the CNWMINKEC peptide to 769-P cells was specifically mediated by KIM-1. The CNWMINKEC peptide was not cytotoxic to cells and was stable for up to 24 hours in the presence of serum. Whole-body fluorescence imaging demonstrated selective homing of the CNWM-INKEC peptide to KIM-1-overexpressing A498 renal tumor compared to KIM1-low expressing HepG2 liver tumor in mice. CONCLUSION: The CNWMINKEC peptide is a promising probe for in vivo imaging and detection of KIM-1‒overexpressing tumors.


Assuntos
Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Neoplasias Renais/metabolismo , Imagem Molecular/métodos , Peptídeos/metabolismo , Regulação para Cima , Células A549 , Animais , Avidina/metabolismo , Biotina/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Camundongos , Transplante de Neoplasias , Imagem Óptica , Biblioteca de Peptídeos , Peptídeos/isolamento & purificação
15.
J Nanobiotechnology ; 16(1): 41, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29669544

RESUMO

BACKGROUND: Radioactive isotope-labeled gold nanomaterials have potential biomedical applications. Here, we report the synthesis and characterization of PEGylated crushed gold shell-radioactive iodide-124-labeled gold core nanoballs (PEG-124I-Au@AuCBs) for in vivo tumor imaging applications through combined positron emission tomography and Cerenkov luminescent imaging (PET/CLI). RESULTS: PEG-124I-Au@AuCBs showed high stability and sensitivity in various pH solutions, serum, and in vivo conditions and were not toxic to tested cells. Combined PET/CLI clearly revealed tumor lesions at 1 h after injection of particles, and both signals remained visible in tumor lesions at 24 h, consistent with the biodistribution results. CONCLUSION: Taken together, the data provided strong evidence for the application of PEG-124I-Au@AuCBs as promising imaging agents in nuclear medicine imaging of various biological systems, particularly in cancer diagnosis.


Assuntos
Ouro/química , Medições Luminescentes , Nanoestruturas/química , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons , Animais , Neoplasias da Mama/patologia , Linhagem Celular , Feminino , Humanos , Concentração de Íons de Hidrogênio , Radioisótopos do Iodo , Soluções
16.
Sci Rep ; 8(1): 3892, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497090

RESUMO

Expression of various molecules on the surface of cancer cells compared to normal cells creates a platform for the generation of various drug vehicles for targeted therapy. Multiple interactions between ligands and their receptors mediated by targeting peptide-modified polymer could enable simultaneous delivery of a drug selectively to target tumor cells, thus limiting side effects resulting from non-specific drug delivery. In this study, we synthesized a novel tumor targeting system by using two key elements: (1) Bld-1 peptide (SNRDARRC), a recently reported bladder tumor targeting peptide identified by using a phage-displayed peptide library, and (2) ELP, a thermally responsive polypeptide. B5V60 containing five Bld-1 peptides and non-targeted ELP77 with a thermal phase-transition over 37 °C were analyzed to determine their bioactivities. Further studies confirmed the superior binding ability of B5V60 to bladder tumor cells and the cellular accumulation of B5V60 in cancer cells was dependent on the expression level of sialyl-Tn antigen (STn), a tumor-associated carbohydrate antigen. Additionally, B5V60 displayed excellent localization in bladder tumor xenograft mice after intravenous injection and was strictly confined to sialyl-Tn antigen-overexpressing tumor tissue. Thus, our newly designed B5V60 showed high potential as a novel carrier for STn-specific targeted cancer therapy or other therapeutic applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Terapia de Alvo Molecular/métodos , Peptídeos/farmacologia , Sequência de Aminoácidos/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Elastina/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Peptídeos/química , Peptídeos/genética , Ligação Proteica/fisiologia , Neoplasias da Bexiga Urinária/metabolismo
17.
Nano Lett ; 18(4): 2637-2644, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29521509

RESUMO

Conventional cancer targeting with nanoparticles has been based on the assumed enhanced permeability and retention (EPR) effect. The data obtained in clinical trials to date, however, have rarely supported the presence of such an effect. To address this challenge, we formulated intracellular nitric oxide-generating nanoparticles (NO-NPs) for the tumor site-specific delivery of NO, a well-known vasodilator, with the intention of boosting EPR. These nanoparticles are self-assembled under aqueous conditions from amphiphilic copolymers of poly(ethylene glycol) and nitrated dextran, which possesses inherent NO release properties in the reductive environment of cancer cells. After systemic administration of the NO-NPs, we quantitatively assessed and visualized increased tumor blood flow as well as enhanced vascular permeability than could be achieved without NO. Additionally, we prepared doxorubicin (DOX)-encapsulated NO-NPs and demonstrated consequential improvement in therapeutic efficacy over the control groups with considerably improved DOX intratumoral accumulation. Overall, this proof of concept study implies a high potency of the NO-NPs as an EPR enhancer to achieve better clinical outcomes.

18.
Adv Healthc Mater ; 7(9): e1701369, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29372628

RESUMO

Dendritic cell (DC)-based cancer immunotherapy requires efficient maturation of DCs and sensitive monitoring of DCs localized in the lymph nodes that activate T cells. This paper reports a robust and simple surface chemistry for highly sensitive and stable radionuclide-embedded gold nanoparticles (Poly-Y-RIe-AuNPs) prepared with oligotyrosine-modified AuNPs with additional Au shell formation as a promising positron emission tomography/computed tomography imaging agent. The multiple oligotyrosine binding sites modified on AuNPs provide excellent stability for conjugated radioisotopes by forming an Au shell. They can be heavily conjugated with radioisotope iodine, which enables sensitive tracking of DCs in the lymphatic system. More importantly, it is found that the maturation of DCs is possible solely with Poly-Y-RIe-AuNPs without any additional stimulus for DC maturation. DCs matured by Poly-Y-RIe-AuNPs induce antitumor immunity to cervical cancer comparable to that produced from DCs pulsated with tumor lysates. These results demonstrate that the peptide-based surface chemistry of Poly-Y-RIe-AuNPs is a simple and straightforward method to produce a highly sensitive and stable nuclear medicine imaging agent that also improves the efficiency of current antitumor immunotherapies.


Assuntos
Rastreamento de Células/métodos , Células Dendríticas/imunologia , Ouro , Radioisótopos do Iodo , Nanopartículas Metálicas/química , Neoplasias do Colo do Útero , Animais , Células Dendríticas/patologia , Feminino , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Radioisótopos do Iodo/química , Radioisótopos do Iodo/farmacocinética , Radioisótopos do Iodo/farmacologia , Camundongos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/imunologia
19.
Biomaterials ; 139: 12-29, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28582715

RESUMO

It is urgently necessary to develop reliable non-invasive stem cell imaging technology for tracking the in vivo fate of transplanted stem cells in living subjects. Herein, we developed a simple and well controlled stem cell imaging method through a combination of metabolic glycoengineering and bioorthogonal copper-free click chemistry. Firstly, the exogenous chemical receptors containing azide (-N3) groups were generated on the surfaces of stem cells through metabolic glycoengineering using metabolic precursor, tetra-acetylated N-azidoacetyl-d-mannosamine(Ac4ManNAz). Next, bicyclo[6.1.0]nonyne-modified glycol chitosan nanoparticles (BCN-CNPs) were prepared as imageable nanoparticles to deliver different imaging agents. Cy5.5, iron oxide nanoparticles and gold nanoparticles were conjugated or encapsulated to BCN-CNPs for optical, MR and CT imaging, respectively. These imageable nanoparticles bound chemical receptors on the Ac4ManNAz-treated stem cell surface specifically via bioorthogonal copper-free click chemistry. Then they were rapidly taken up by the cell membrane turn-over mechanism resulting in higher endocytic capacity compared non-specific uptake of nanoparticles. During in vivo animal test, BCN-CNP-Cy5.5-labeled stem cells could be continuously tracked by non-invasive optical imaging over 15 days. Furthermore, BCN-CNP-IRON- and BCN-CNP-GOLD-labeled stem cells could be efficiently visualized using in vivo MR and CT imaging demonstrating utility of our stem cell labeling method using chemical receptors. These results conclude that our method based on metabolic glycoengineering and bioorthogonal copper-free click chemistry can stably label stem cells with diverse imageable nanoparticles representing great potential as new stem cell imaging technology.


Assuntos
Carbocianinas/química , Rastreamento de Células/métodos , Nanopartículas/química , Células-Tronco/química , Análise de Variância , Animais , Azidas/química , Compostos de Bifenilo/química , Quitosana/química , Química Click , Hexosaminas/química , Humanos , Masculino , Engenharia Metabólica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Óptica , Succinimidas/química , Fatores de Tempo
20.
Theranostics ; 7(4): 926-934, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382164

RESUMO

Reliable and sensitive imaging tools are required to track macrophage migration and provide a better understating of their biological roles in various diseases. Here, we demonstrate the possibility of radioactive iodide-embedded gold nanoparticles (RIe-AuNPs) as a cell tracker for nuclear medicine imaging. To demonstrate this utility, we monitored macrophage migration to carrageenan-induced sites of acute inflammation in living subjects and visualized the effects of anti-inflammatory agents on this process. Macrophage labeling with RIe-AuNPs did not alter their biological functions such as cell proliferation, phenotype marker expression, or phagocytic activity. In vivo imaging with positron-emission tomography revealed the migration of labeled macrophages to carrageenan-induced inflammation lesions 3 h after transfer, with highest recruitment at 6 h and a slight decline of radioactive signal at 24 h; these findings were highly consistent with the data of a bio-distribution study. Treatment with dexamethasone (an anti-inflammation drug) or GSK5182 (an ERRγ inverse agonist) hindered macrophage recruitment to the inflamed sites. Our findings suggest that a cell tracking strategy utilizing RIe-AuNPs will likely be highly useful in research related to macrophage-related disease and cell-based therapies.


Assuntos
Ouro/análise , Inflamação/patologia , Radioisótopos do Iodo/análise , Macrófagos/imunologia , Nanopartículas/análise , Tomografia por Emissão de Pósitrons/métodos , Animais , Anti-Inflamatórios/administração & dosagem , Carragenina/administração & dosagem , Dexametasona/administração & dosagem , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Camundongos , Tamoxifeno/administração & dosagem , Tamoxifeno/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA