Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Biofilms Microbiomes ; 10(1): 50, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902263

RESUMO

During the COVID-19 pandemic, facemasks played a pivotal role in preventing person-person droplet transmission of viral particles. However, prolonged facemask wearing causes skin irritations colloquially referred to as 'maskne' (mask + acne), which manifests as acne and contact dermatitis and is mostly caused by pathogenic skin microbes. Previous studies revealed that the putative causal microbes were anaerobic bacteria, but the pathogenesis of facemask-associated skin conditions remains poorly defined. We therefore characterized the role of the facemask-associated skin microbiota in the development of maskne using culture-dependent and -independent methodologies. Metagenomic analysis revealed that the majority of the facemask microbiota were anaerobic bacteria that originated from the skin rather than saliva. Previous work demonstrated direct interaction between pathogenic bacteria and antagonistic strains in the microbiome. We expanded this analysis to include indirect interaction between pathogenic bacteria and other indigenous bacteria classified as either 'pathogen helper (PH)' or 'pathogen inhibitor (PIn)' strains. In vitro screening of bacteria isolated from facemasks identified both strains that antagonized and promoted pathogen growth. These data were validated using a mouse skin infection model, where we observed attenuation of symptoms following pathogen infection. Moreover, the inhibitor of pathogen helper (IPH) strain, which did not directly attenuate pathogen growth in vitro and in vivo, functioned to suppress symptom development and pathogen growth indirectly through PH inhibitory antibacterial products such as phenyl lactic acid. Taken together, our study is the first to define a mechanism by which indirect microbiota interactions under facemasks can control symptoms of maskne by suppressing a skin pathogen.


Assuntos
COVID-19 , Máscaras , Microbiota , Pele , Animais , Camundongos , Humanos , COVID-19/microbiologia , COVID-19/virologia , Pele/microbiologia , Acne Vulgar/microbiologia , SARS-CoV-2 , Feminino , Metagenômica/métodos , Modelos Animais de Doenças , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Interações Microbianas , Dermatite de Contato/etiologia
2.
Genes (Basel) ; 14(12)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38137032

RESUMO

The human rhinovirus (RV) is a positive-stranded RNA virus that causes respiratory tract diseases affecting both the upper and lower halves of the respiratory system. RV enhances its replication by concentrating RNA synthesis within a modified host membrane in an intracellular compartment. RV infections often occur alongside infections caused by other respiratory viruses, and the RV virus may remain asymptomatic for extended periods. Alongside qualitative detection, it is essential to accurately quantify RV RNA from clinical samples to explore the relationships between RV viral load, infections caused by the virus, and the resulting symptoms observed in patients. A reference material (RM) is required for quality evaluation, the performance evaluation of molecular diagnostic products, and evaluation of antiviral agents in the laboratory. The preparation process for the RM involves creating an RV RNA mixture by combining RV viral RNA with RNA storage solution and matrix. The resulting RV RNA mixture is scaled up to a volume of 25 mL, then dispensed at 100 µL per vial and stored at -80 °C. The process of measuring the stability and homogeneity of RV RMs was conducted by employing reverse transcription droplet digital polymerase chain reaction (RT-ddPCR). Digital PCR is useful for the analysis of standards and can help to improve measurement compatibility: it represents the equivalence of a series of outcomes for reference materials and samples being analyzed when a few measurement procedures are employed, enabling objective comparisons between quantitative findings obtained through various experiments. The number of copies value represents a measured result of approximately 1.6 × 105 copies/µL. The RM has about an 11% bottle-to-bottle homogeneity and shows stable results for 1 week at temperatures of 4 °C and -20 °C and for 12 months at a temperature of -80 °C. The developed RM can enhance the dependability of RV molecular tests by providing a precise reference value for the absolute copy number of a viral target gene. Additionally, it can serve as a reference for diverse studies.


Assuntos
Sistema Respiratório , Rhinovirus , Humanos , Rhinovirus/genética , Reação em Cadeia da Polimerase , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , RNA Viral/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA