Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 645, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245505

RESUMO

Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is currently the leading cause of chronic liver disease worldwide. Metabolic Dysfunction-Associated Steatohepatitis (MASH), an advanced form of MASLD, can progress to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Based on recent findings by our team that liver 5HT2A knockout male mice suppressed steatosis and reduced fibrosis-related gene expression, we developed a peripheral 5HT2A antagonist, compound 11c for MASH. It shows good in vitro activity, stability, and in vivo pharmacokinetics (PK) in rats and dogs. Compound 11c also shows good in vivo efficacy in a diet-induced obesity (DIO) male mice model and in a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) male mice model, effectively improving histologic features of MASH and fibrosis. According to the tissue distribution study using [14C]-labeled 11c, the compound was determined to be a peripheral 5HT2A antagonist. Collectively, first-in-class compound 11c shows promise as a therapeutic agent for the treatment of MASLD and MASH.


Assuntos
Fígado Gorduroso , Neoplasias Hepáticas , Fenômenos Fisiológicos Musculoesqueléticos , Masculino , Camundongos , Animais , Cães , Ratos , Fígado Gorduroso/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Camundongos Knockout
2.
ACS Chem Neurosci ; 14(20): 3761-3771, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796021

RESUMO

In the human brain, neurophysiological activity is modulated by the movement of neurotransmitters and neurosteroids. To date, the similarity between cerebral organoids and actual human brains has been evaluated using comprehensive multiomics approaches. However, a systematic analysis of both neurotransmitters and neurosteroids from cerebral organoids has not yet been reported. Here, we performed quantitative and qualitative assessments of neurotransmitters and neurosteroids over the course of cerebral organoid differentiation. Our multiomics approaches revealed that the expression levels of neurotransmitter-related proteins and RNA, including neurosteroids, increase as cerebral organoids mature. We also found that the electrophysiological activity of human cerebral organoids increases in tandem with the expression levels of both neurotransmitters and neurosteroids. Our study demonstrates that the expression levels of neurotransmitters and neurosteroids can serve as key factors in evaluating the maturity and functionality of human cerebral organoids.


Assuntos
Neuroesteroides , Humanos , Neuroesteroides/metabolismo , Neurotransmissores/farmacologia , Neurotransmissores/metabolismo , Encéfalo/metabolismo , Organoides , Diferenciação Celular
3.
Chemosphere ; 335: 139122, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37276999

RESUMO

This is the first report to evaluate the potential effects of microplastics (MPs) on wild wharf roaches (Ligia exotica) in a shoreline habitant. L. exotica is an important plastic detritus consumer in coastal area. A survey was conducted from May to June in the years 2019 and 2020 in two South Korean nearshore sites: Nae-do (as MPs-uncontaminated) and Maemul-do (as MPs-contaminated). MPs (>20 µm in size) were detected highly in gastrointestinal tracts of the L. exotica from Maemul-do, at an average level of 50.56 particles/individual. They were detected in much lower levels in the L. exotica from Nae-do. at an average rate of 1.00 particles/individual. The polymer type and shape were dominated by expanded polystyrene (EPS, 93%) and fragment (99.9%) in L. exotica from Maemul-do. Especially, Hexabromocyclododecanes, brominated flame retardants added to EPS, have been detected highly in L. exotica from Maemul-do (630.86 ± 587.21 ng/g l. w.) than those of Nae-do (detection limit: 10.5 ng/g l. w). Genome-wide transcriptome profiling revealed altered expression of genes associated with fatty acid metabolic processes, the innate-immune response-activating system and vesicle cytoskeletal trafficking in L. exotica from Maemul-do. The activation of the p53 signaling pathway (which is related to proteasome, ER regulation and cell morphogenesis) is likely to be involved in the EPS-uptake of wild L. exotica. Four neurosteroids were also detected in head tissue, and cortisol and progesterone concentrations differed significantly in L. exotica from Maemul-do. Our findings also suggest that resident plastic detritus consumer might be a useful indicator organism for evaluating pollution and potential effects of environmental microplastics.


Assuntos
Cyprinidae , Isópodes , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Multiômica , Poliestirenos/metabolismo , Monitoramento Ambiental , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 457: 131714, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37263023

RESUMO

The molecular mechanism of perfluorobutanesulfonic acid (PFBS), an alternative to legacy perfluorooctanesulfonic acid (PFOS), is not fully understood yet. Therefore, we conducted a developmental toxicity evaluation on zebrafish embryos exposed to PFBS and PFOS and assessed neurobehavioral changes at concentrations below each point of departure (POD) determined by embryonic mortality. Using transcriptomics, proteomics, and metabolomics, biomolecular perturbations in response to PFBS were profiled and then integrated for comparison with those for PFOS. Although PFBS (7525.47 µM POD) was approximately 700 times less toxic than PFOS (11.42 µM POD), altered neurobehavior patterns and affected kinds of endogenous neurochemicals were similar between PFBS and PFOS at the corresponding POD-based concentrations. Multi-omics analysis revealed that the PFBS neurotoxicity mechanism was associated with oxidative stress, lipid metabolism, and glycolysis/glucogenesis. The commonalities in developmental neurotoxicity-related mechanisms between PFBS and PFOS interconnected by knowledge-based integration of multi-omics included the calcium signaling pathway, lipid homeostasis, and primary bile acid biosynthesis. Despite being less toxic than PFOS, PFBS exhibited similar dysregulated molecular mechanisms, suggesting that chain length differences do not affect the intrinsic toxicity mechanism. Overall, carefully managing potential toxicity of PFBS can secure its status as an alternative to PFOS.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Animais , Peixe-Zebra , Multiômica , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Fluorocarbonos/análise
5.
Toxics ; 11(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37368577

RESUMO

Bisphenol F (BPF; 4,4'-dihydroxydiphenylmethane) is one of the most frequently used compounds in the manufacture of plastics and epoxy resins. Previous studies have demonstrated that BPF affects locomotor behavior, oxidative stress, and neurodevelopment in zebrafish. However, its neurotoxic effects are controversial, and the underlying mechanisms are unclear. In order to determine whether BPF affects the motor system, we exposed zebrafish embryos to BPF and assessed behavioral, histological, and neurochemical changes. Spontaneous locomotor behavior and startle response were significantly decreased in BPF-treated zebrafish larvae compared with control larvae. BPF induced motor degeneration and myelination defects in zebrafish larvae. In addition, embryonic exposure to BPF resulted in altered metabolic profiles of neurochemicals, including neurotransmitters and neurosteroids, which may impact locomotion and motor function. In conclusion, exposure to BPF has the potential to affect survival, motor axon length, locomotor activity, myelination, and neurochemical levels of zebrafish larvae.

6.
ACS Infect Dis ; 9(4): 1033-1045, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36912867

RESUMO

Gemcitabine is a nucleoside analogue of deoxycytidine and has been reported to be a broad-spectrum antiviral agent against both DNA and RNA viruses. Screening of a nucleos(t)ide analogue-focused library identified gemcitabine and its derivatives (compounds 1, 2a, and 3a) blocking influenza virus infection. To improve their antiviral selectivity by reducing cytotoxicity, 14 additional derivatives were synthesized in which the pyridine rings of 2a and 3a were chemically modified. Structure-and-activity and structure-and-toxicity relationship studies demonstrated that compounds 2e and 2h were most potent against influenza A and B viruses but minimally cytotoxic. It is noteworthy that in contrast to cytotoxic gemcitabine, they inhibited viral infection with 90% effective concentrations of 14.5-34.3 and 11.4-15.9 µM, respectively, maintaining viability of mock-infected cells over 90% at 300 µM. Resulting antiviral selectivity was comparable to that of a clinically approved nucleoside analogue, favipiravir. The cell-based viral polymerase assay proved the mode-of-action of 2e and 2h targeting viral RNA replication and/or transcription. In a murine influenza A virus-infection model, intraperitoneal administration of 2h not only reduced viral RNA level in the lungs but also alleviated infection-mediated pulmonary infiltrates. In addition, it inhibited replication of severe acute respiratory syndrome virus 2 infection in human lung cells at subtoxic concentrations. The present study could provide a medicinal chemistry framework for the synthesis of a new class of viral polymerase inhibitors.


Assuntos
COVID-19 , Influenza Humana , Orthomyxoviridae , Humanos , Animais , Camundongos , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2 , Gencitabina , Influenza Humana/tratamento farmacológico , Nucleosídeos
7.
Exp Mol Med ; 54(12): 2200-2209, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509830

RESUMO

Neuroinflammation is one of the critical processes implicated in central nervous system (CNS) diseases. Therefore, alleviating neuroinflammation has been highlighted as a therapeutic strategy for treating CNS disorders. However, the complexity of neuroinflammatory processes and poor drug transport to the brain are considerable hurdles to the efficient control of neuroinflammation using small-molecule therapeutics. Thus, there is a significant demand for new chemical entities (NCEs) targeting neuroinflammation. Herein, we rediscovered benzopyran-embedded tubulin inhibitor 1 as an anti-neuroinflammatory agent via phenotype-based screening. A competitive photoaffinity labeling study revealed that compound 1 binds to tubulin at the colchicine-binding site. Structure-activity relationship analysis of 1's analogs identified SB26019 as a lead compound with enhanced anti-neuroinflammatory efficacy. Mechanistic studies revealed that upregulation of the tubulin monomer was critical for the anti-neuroinflammatory activity of SB26019. We serendipitously found that the tubulin monomer recruits p65, inhibiting its translocation from the cytosol to the nucleus and blocking NF-κB-mediated inflammatory pathways. Further in vivo validation using a neuroinflammation mouse model demonstrated that SB26019 suppressed microglial activation by downregulating lba-1 and proinflammatory cytokines. Intraperitoneal administration of SB26019 showed its therapeutic potential as an NCE for successful anti-neuroinflammatory regulation. Along with the recent growing demands on tubulin modulators for treating various inflammatory diseases, our results suggest that colchicine-binding site-specific modulation of tubulins can be a potential strategy for preventing neuroinflammation and treating CNS diseases.


Assuntos
Moduladores de Tubulina , Tubulina (Proteína) , Camundongos , Animais , Moduladores de Tubulina/metabolismo , Tubulina (Proteína)/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Microtúbulos/metabolismo , Colchicina/farmacologia , Colchicina/uso terapêutico , Colchicina/metabolismo , Microglia/metabolismo , Lipopolissacarídeos/metabolismo
8.
Neurotoxicology ; 93: 257-264, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36243200

RESUMO

While the developmental neurotoxicity of perfluorooctane sulfonate (PFOS) has been reported, its seizurogenic potential has not been investigated. Behavior assessment was conducted in zebrafish larvae exposed to PFOS at concentrations of 0, 0.1, 1, 5, 10, and 20 µM. Changes in electrophysiological signals and in the concentration of 20 neurochemicals were measured. Behavior assessment revealed that PFOS altered larval behaviors and significantly increased the counts and duration of bursting (an irregular high-speed movement). Electrophysiological analysis showed that the number of seizure-like events and duration of seizure-like signals were significantly increased, corresponding to results observed using pentylenetetrazol as a positive seizurogenic agent. The outbreak of seizures detected via abnormal electrophysiological signals was confirmed by the increased expression of c-fos and bdnf, which are typical seizure-related genes. Analysis of neurochemicals indicated that PFOS dysregulated overall neurotransmission systems, and aberrant endogenous concentrations of various neurochemicals in the amino acid, cholinergic, dopaminergic, serotonergic and kynurenergic, and GABAergic systems were associated with seizure-like behavior and signals. This study, the first to demonstrate that exposure to PFOS provokes a seizurogenic effect in developing zebrafish larvae, should stimulate further research on the association between PFOS exposure and neurodevelopmental toxicity or neurological disorders.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Peixe-Zebra/genética , Larva , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Convulsões/induzido quimicamente , Poluentes Químicos da Água/toxicidade
9.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142594

RESUMO

Microplastics, small pieces of plastic derived from polystyrene, have recently become an ecological hazard due to their toxicity and widespread occurrence in aquatic ecosystems. In this study, we exposed zebrafish larvae to two types of fluorescent polystyrene nanoparticles (PS-NPs) to identify their size-dependent effects. PS-NPs of 50 nm, unlike 100 nm PS-NPs, were found to circulate in the blood vessels and accumulate in the brains of zebrafish larvae. Behavioral and electroencephalogram (EEG) analysis showed that 50 nm PS-NPs induce abnormal behavioral patterns and changes in EEG power spectral densities in zebrafish larvae. In addition, the quantification of endogenous neurochemicals in zebrafish larvae showed that 50 nm PS-NPs disturb dopaminergic metabolites, whereas 100 nm PS-NPs do not. Finally, we assessed the effect of PS-NPs on the permeability of the blood-brain barrier (BBB) using a microfluidic system. The results revealed that 50 nm PS-NPs have high BBB penetration compared with 100 nm PS-NPs. Taken together, we concluded that small nanoparticles disturb the nervous system, especially dopaminergic metabolites.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Ecossistema , Larva/metabolismo , Microplásticos/toxicidade , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Plásticos/metabolismo , Poliestirenos/farmacologia , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
10.
J Hazard Mater ; 439: 129616, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36104895

RESUMO

The effects of polystyrene microplastic (PS-MP) size on neurotoxicity remain to be evaluated at various microsizes, and the seizurogenic effects of PS-MPs are unknown. This study aimed to evaluate the swimming behavior of zebrafish larvae under light-dark transitions after exposure to four PS-MP sizes (i.e., 1, 6, 10, and 25 µm) at concentrations of 500, 5,000, and 50,000 particles/mL. Changes in electroencephalographic signals, seizure-related gene expression, and neurochemical concentrations were measured. Locomotor activity was inhibited only by 10-µm PS-MPs. According to electroencephalographic signals, the number and total duration of seizure-like events significantly increased by 10-µm PS-MPs, which was confirmed by the altered expression of seizure-related genes c-fos and pvalb5. Additionally, an increase in the levels of neurochemicals choline, betaine, dopamine, 3-methoxytyramine, and gamma-aminobutyric acid indicated that the observed hypoactivity and seizure-like behavior were associated with the dysregulation of the cholinergic, dopaminergic, and GABAergic systems. Overall, these findings demonstrate that exposure to PS-MPs can potentially cause seizurogenic effects in developing zebrafish embryos, and we highlight that PS-MPs 10 µm in size dominantly affect neurotoxicity.


Assuntos
Microplásticos , Poliestirenos , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Poliestirenos/metabolismo , Poliestirenos/toxicidade , Convulsões , Peixe-Zebra/metabolismo
11.
Aquat Toxicol ; 251: 106279, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36044784

RESUMO

Limited studies on neurotoxicity following chronic exposure to butyl­paraben (BuP) have been conducted. In this study, neurobehavior in zebrafish adults was assessed using the novel tank test, photomotor response test, and T-maze test after exposure to BuP for 28 days at concentrations of 0, 0.01, 0.1, and 1.0 mg/L. To comprehensively understand the underlying molecular perturbations in the brain, alterations in transcripts, neurotransmitters, and neurosteroids were measured. We found that BuP penetrated the blood-brain barrier and impaired neurobehavior in photosensitivity at 1.0 mg/L and in memory at 0.1 and 1.0 mg/L. RNA-seq analysis showed that phototransduction, tight junctions, and neuroactive ligand receptor activity were significantly affected, which explains the observed abnormal neurobehaviors. Neurosteroid analysis revealed that BuP increased cortisol levels in a concentration-dependent manner and specifically reduced allopregnanolone levels at all tested concentrations, suggesting that cortisol and allopregnanolone are significant neurosteroid markers associated with photosensitivity and memory deficits. Collectively, we demonstrated that BuP can cross the blood-brain and modulate the levels of transcripts, associated with phototransduction and circadian rhythm, and neurosteroidal cortisol and allopregnanolone, resulting in abnormal neurobehavioral responses to light stimulation and learning and memory.


Assuntos
Neuroesteroides , Poluentes Químicos da Água , Animais , Hidrocortisona , Ligantes , Transtornos da Memória/induzido quimicamente , Neurotransmissores , Parabenos/toxicidade , Pregnanolona , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia
12.
Nat Commun ; 13(1): 5051, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030255

RESUMO

Autism spectrum disorder is characterized by early postnatal symptoms, although little is known about the mechanistic deviations that produce them and whether correcting them has long-lasting preventive effects on adult-stage deficits. ARID1B, a chromatin remodeler implicated in neurodevelopmental disorders, including autism spectrum disorder, exhibits strong embryonic- and early postnatal-stage expression. We report here that Arid1b-happloinsufficient (Arid1b+/-) mice display autistic-like behaviors at juvenile and adult stages accompanied by persistent decreases in excitatory synaptic density and transmission. Chronic treatment of Arid1b+/- mice with fluoxetine, a selective serotonin-reuptake inhibitor, during the first three postnatal weeks prevents synaptic and behavioral deficits in adults. Mechanistically, these rescues accompany transcriptomic changes, including upregulation of FMRP targets and normalization of HDAC4/MEF2A-related transcriptional regulation of the synaptic proteins, SynGAP1 and Arc. These results suggest that chronic modulation of serotonergic receptors during critical early postnatal periods prevents synaptic and behavioral deficits in adult Arid1b+/- mice through transcriptional reprogramming.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Serotonina , Fatores de Transcrição , Animais , Fluoxetina , Haploinsuficiência , Camundongos , Serotonina/metabolismo , Fatores de Transcrição/genética , Proteínas Ativadoras de ras GTPase
13.
Sci Total Environ ; 851(Pt 2): 158258, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030852

RESUMO

Although bisphenol F (BPF), the main replacement for bisphenol A, has been commonly used in polycarbonate production, its neurotoxicity and the underlying mechanisms remain poorly understood. To address this knowledge gap, this study aimed to assess the neurotoxicity caused by chronic exposure to BPF and to identify its underlying mechanisms. We exposed adult zebrafish chronically to BPF at environmentally relevant concentrations (0.001, 0.01, and 0.1 mg/L) for 4 weeks. The results revealed that with BPF crossing the blood-brain barrier and bioaccumulating in brain tissues, chronic exposure to BPF resulted in anxiety-like behaviors and disruptions in learning and memory function in adult zebrafish. Furthermore, BPF toxicity in the zebrafish brain involved the dysregulation of metabolic pathways for choline and kynurenine in neurotransmitter systems and for 17ß-estradiol, cortisol, pregnenolone-sulfate, and Dehydroepiandrosterone (DHEA)-sulfate in neurosteroid systems. RNA-seq analysis revealed that BPF exposure affected metabolic pathways, calcium signaling pathways, neuroactive ligand-receptor interactions, tight junctions, gap junctions, and the gonadotropin-releasing hormone signaling pathway. Our results indicate that chronic exposure to BPF alters the neurochemical profile of the brain and causes neurobehavioral effects, such as anxiety and cognitive decline. Overall, the multimodal approach, including behavioral and neurochemical profiling technologies, has great potential for the comprehensive assessment of potential risks posed by environmental pollutants to human and ecosystem health.


Assuntos
Compostos Benzidrílicos , Poluentes Ambientais , Neuroesteroides , Animais , Compostos Benzidrílicos/toxicidade , Colina/metabolismo , Desidroepiandrosterona , Ecossistema , Poluentes Ambientais/toxicidade , Estradiol/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hidrocortisona , Cinurenina/metabolismo , Ligantes , Pregnenolona/metabolismo , Sulfatos/metabolismo , Peixe-Zebra/fisiologia
14.
ACS Med Chem Lett ; 13(7): 1052-1061, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35859863

RESUMO

Overactive bladder (OAB) is a syndrome causing a sudden and unstoppable need to urinate with significant global prevalence. Several drugs are used to treat OAB; however, they have various side effects. Therefore, new treatment options for OAB are required. A series of novel 5-oxo-N-phenyl-1-thioxo-4,5-dihydro-1H-thiazolo[3,4-a]quinazoline-3-carboxamide derivatives were synthesized and evaluated for their large-conductance voltage- and Ca2+-activated K+ channel activation through a cell-based fluorescence assay and electrophysiological recordings. Several compounds, including a 7-bromo substituent on the heterocyclic system, showed increased channel currents. Among the derivatives, compound 12h exhibited potent in vitro activity with a half-maximal effective concentration (EC50) of 2.89 µM, good oral pharmacokinetic properties (area under the curve and half-life), and in vivo efficacy in a spontaneously hypertensive rat model.

15.
Eur J Med Chem ; 239: 114517, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35732081

RESUMO

Non-alcoholic fatty liver disease (NAFLD), attributed to excessive fat accumulation in the liver, is reportedly prevalent worldwide. NAFLD is one of the leading causes of chronic liver disease, including non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatic cellular carcinoma (HCC). The peripheral roles of serotonin (5-hydroxytryptamine, 5HT) were found to regulate hepatic lipid metabolism. Among serotonin receptor subtypes, 5HT2A receptor is known to regulate hepatic lipid metabolism. Hepatic lipid accumulation and hepatic triglyceride (TG) were reduced in liver-specific 5HT2A receptor knockout (5HT2A receptor LKO) mice upon high-fat diet (HFD) feeding. In the present study, we explored a series of new peripherally acting 5HT2A receptor antagonists. Compound 14a displayed good in vitro activity, with an IC50 value of 0.17 nM. Compound 14a exhibited good microsomal stability, no significant CYP and hERG inhibition, and 5HT receptor subtype selectivity. The brain-to-plasma ratio of 14a was below the lower limit of quantification, indicating limited blood-brain barrier (BBB) penetration. HFD-fed 14a treated mice showed decreased liver steatosis and lobular inflammation. These results demonstrate the potential of newly synthesized peripheral 5HT2A receptor antagonists for treating NAFLD.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/patologia , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Serotonina/metabolismo , Tirosina/metabolismo
16.
Neurochem Res ; 47(8): 2294-2306, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35562624

RESUMO

Paraquat is a polar herbicide protecting plant products against invasive species, it requires careful manipulation and restricted usage because of its harmful potentials. Exposure to paraquat triggers oxidative damage in dopaminergic neurons and subsequently causes a behavioral defect in vivo. Thereby, persistent exposure to paraquat is known to increase Parkinson's disease risk by dysregulating dopaminergic systems in humans. Therefore, most studies have focused on the dopaminergic systems to elucidate the neurotoxicological mechanism of paraquat poisoning, and more comprehensive neurochemistry including histaminergic, serotonergic, cholinergic, and GABAergic systems has remained unclear. Therefore, in this study, we investigated the toxicological potential of paraquat poisoning using a variety of approaches such as toxicokinetic profiles, behavioral effects, neural activity, and broad-spectrum neurochemistry in zebrafish larvae after short-term exposure to paraquat and we performed the molecular modeling approach. Our results showed that paraquat was slowly absorbed in the brain of zebrafish after oral administration of paraquat. In addition, paraquat toxicity resulted in behavioral impairments, namely, reduced motor activity and led to abnormal neural activities in zebrafish larvae. This locomotor deficit came with a dysregulation of dopamine synthesis induced by the inhibition of tyrosine hydroxylase activity, which was also indirectly confirmed by molecular modeling studies. Furthermore, short-term exposure to paraquat also caused simultaneous dysregulation of other neurochemistry including cholinergic and serotonergic systems in zebrafish larvae. The present study suggests that this neurotoxicological profiling could be a useful tool for understanding the brain neurochemistry of neurotoxic agents that might be a potential risk to human and environmental health.


Assuntos
Herbicidas , Paraquat , Animais , Colinérgicos , Dopamina , Herbicidas/toxicidade , Humanos , Larva , Paraquat/toxicidade , Peixe-Zebra/fisiologia
17.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525453

RESUMO

Epilepsy is one of the most common neurological disorders, and it is characterized by spontaneous seizures. In a previous study, we identified 4-(2-chloro-4-fluorobenzyl)-3-(2-thienyl)-1,2,4-oxadiazol-5(4H)-one (GM-90432) as a novel anti-epileptic agent in chemically- or genetically-induced epileptic zebrafish and mouse models. In this study, we investigated the anti-epileptic effects of GM-90432 through neurochemical profiling-based approach to understand the neuroprotective mechanism in a pentylenetetrazole (PTZ)-induced epileptic seizure zebrafish model. GM-90432 effectively improved PTZ-induced epileptic behaviors via upregulation of 5-hydroxytryptamine, 17-ß-estradiol, dihydrotestosterone, progesterone, 5α -dihydroprogesterone, and allopregnanolone levels, and downregulation of normetanephrine, gamma-aminobutyric acid, and cortisol levels in brain tissue. GM-90432 also had a protective effect against PTZ-induced oxidative stress and zebrafish death, suggesting that it exhibits biphasic neuroprotective effects via scavenging of reactive oxygen species and anti-epileptic activities in a zebrafish model. In conclusion, our results suggest that neurochemical profiling study could be used to better understand of anti-epileptic mechanism of GM-90432, potentially leading to new drug discovery and development of anti-seizure agents.


Assuntos
Anticonvulsivantes/farmacologia , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxidiazóis/farmacologia , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/síntese química , Antioxidantes/síntese química , Encéfalo/metabolismo , Química Encefálica , Di-Hidrotestosterona/metabolismo , Modelos Animais de Doenças , Estradiol/metabolismo , Hidrocortisona/metabolismo , Masculino , Fármacos Neuroprotetores/síntese química , Normetanefrina/metabolismo , Oxidiazóis/síntese química , Estresse Oxidativo , Pentilenotetrazol/administração & dosagem , Pregnanolona/metabolismo , Progesterona/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/fisiopatologia , Serotonina/metabolismo , Peixe-Zebra , Ácido gama-Aminobutírico/metabolismo
18.
EMBO Mol Med ; 13(2): e12632, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33428810

RESUMO

Glycine transporters (GlyT1 and GlyT2) that regulate levels of brain glycine, an inhibitory neurotransmitter with co-agonist activity for NMDA receptors (NMDARs), have been considered to be important targets for the treatment of brain disorders with suppressed NMDAR function such as schizophrenia. However, it remains unclear whether other amino acid transporters expressed in the brain can also regulate brain glycine levels and NMDAR function. Here, we report that SLC6A20A, an amino acid transporter known to transport proline based on in vitro data but is understudied in the brain, regulates proline and glycine levels and NMDAR function in the mouse brain. SLC6A20A transcript and protein levels were abnormally increased in mice carrying a mutant PTEN protein lacking the C terminus through enhanced ß-catenin binding to the Slc6a20a gene. These mice displayed reduced extracellular levels of brain proline and glycine and decreased NMDAR currents. Elevating glycine levels back to normal ranges by antisense oligonucleotide-induced SLC6A20 knockdown, or the competitive GlyT1 antagonist sarcosine, normalized NMDAR currents and repetitive climbing behavior observed in these mice. Conversely, mice lacking SLC6A20A displayed increased extracellular glycine levels and NMDAR currents. Lastly, both mouse and human SLC6A20 proteins mediated proline and glycine transports, and SLC6A20 proteins could be detected in human neurons. These results suggest that SLC6A20 regulates proline and glycine homeostasis in the brain and that SLC6A20 inhibition has therapeutic potential for brain disorders involving NMDAR hypofunction.


Assuntos
Glicina , Receptores de N-Metil-D-Aspartato , Animais , Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Homeostase , Proteínas de Membrana Transportadoras , Camundongos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
19.
Neurochem Int ; 141: 104870, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33035603

RESUMO

Epilepsy is a common chronic neurological disease characterized by recurrent epileptic seizures. A seizure is an uncontrolled electrical activity in the brain that can cause different levels of behavior, emotion, and consciousness. One-third of patients fail to receive sufficient seizure control, even though more than fifty FDA-approved anti-seizure drugs (ASDs) are available. In this study, we attempted small molecule screening to identify potential therapeutic agents for the treatment of seizures using seizure-induced animal models. Through behavioral phenotype-based screening, 4-(2-chloro-4-fluorobenzyl)-3-(2-thienyl)-1,2,4-oxadiazol-5(4H)-one (GM-90432) was identified as a prototype. GM-90432 treatment effectively decreased seizure-like behaviors in zebrafish and mice with chemically induced seizures. These results were consistent with decreased neuronal activity through immunohistochemistry for pERK in zebrafish larvae. Additionally, electroencephalogram (EEG) analysis revealed that GM-90432 decreases seizure-specific EEG events in adult zebrafish. Moreover, we revealed the preferential binding of GM-90432 to voltage-gated Na+ channels using a whole-cell patch clamp technique. Through pharmacokinetic analysis, GM-90432 effectively penetrated the blood-brain barrier and was distributed into the brain. Taken together, we suggest that GM-90432 has the potential to be developed into a new ASD candidate.


Assuntos
Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapêutico , Oxidiazóis/farmacocinética , Oxidiazóis/uso terapêutico , Convulsões/tratamento farmacológico , Animais , Comportamento Animal , Barreira Hematoencefálica , Eletroencefalografia , Imuno-Histoquímica , Larva , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Programas de Rastreamento , Camundongos , Camundongos Endogâmicos ICR , Técnicas de Patch-Clamp , Convulsões/psicologia , Bibliotecas de Moléculas Pequenas , Canais de Sódio/metabolismo , Peixe-Zebra
20.
Bioorg Med Chem Lett ; 30(13): 127201, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386982

RESUMO

A series of aryl sulfide derivatives was synthesized and evaluated for their anti-melanogenic activities. Several compounds, including 3e, 3i and 3q exhibited good anti-melanogenic activities. Among the derivatives, compound 3i showed good inhibitory effects against melanin synthesis and showed no toxicity in reconstituted human eye and skin tissues.


Assuntos
Melaninas/antagonistas & inibidores , Preparações Clareadoras de Pele/farmacologia , Sulfetos/farmacologia , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Preparações Clareadoras de Pele/síntese química , Preparações Clareadoras de Pele/toxicidade , Sulfetos/síntese química , Sulfetos/toxicidade , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA