Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 298: 120768, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096984

RESUMO

Focused ultrasound (FUS) stimulation is a promising neuromodulation technique with the merits of non-invasiveness, high spatial resolution, and deep penetration depth. However, simultaneous imaging of FUS-induced brain tissue displacement and the subsequent effect of FUS stimulation on brain hemodynamics has proven challenging thus far. In addition, earlier studies lack in situ confirmation of targeting except for the magnetic resonance imaging-guided FUS system-based studies. The purpose of this study is 1) to introduce a fully ultrasonic approach to in situ target, modulate neuronal activity, and monitor the resultant neuromodulation effect by respectively leveraging displacement imaging, FUS, and functional ultrasound (fUS) imaging, and 2) to investigate FUS-evoked cerebral blood volume (CBV) response and the relationship between CBV and displacement. We performed displacement imaging on craniotomized mice to confirm the in situ targeting for neuromodulation site. We recorded hemodynamic responses evoked by FUS while fUS imaging revealed an ipsilateral CBV increase that peaks at 4 s post-FUS. We report a stronger hemodynamic activation in the subcortical region than cortical, showing good agreement with a brain elasticity map that can also be obtained using a similar methodology. We observed dose-dependent CBV responses with peak CBV, activated area, and correlation coefficient increasing with the ultrasonic dose. Furthermore, by mapping displacement and hemodynamic activation, we found that displacement colocalized and linearly correlated with CBV increase. The findings presented herein demonstrated that FUS evokes ipsilateral hemodynamic activation in cortical and subcortical depths while the evoked hemodynamic responses colocalize and correlate with FUS-induced displacement. We anticipate that our findings will help consolidate accurate targeting as well as shedding light on one of the mechanisms behind FUS modulation, i.e., how FUS mechanically displaces brain tissue affecting cerebral hemodynamics and thereby its associated connectivity.

2.
ACS Appl Mater Interfaces ; 16(27): 35084-35094, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38918895

RESUMO

The wide band gap perovskite solar cells (PSCs) have attracted considerable attention for their great potential as top cells in high efficiency tandem cell application. However, the photovoltaic performance and stability of PSCs are constrained by nonradiative recombination, primarily stemming from defects within the bulk and at the interface of charge transport layer/perovskite and phase segregation. In this study, we systematically investigated the effects of 2-thiopheneethylammonium chloride (TEACl) on a wide band gap (∼1.67 eV) Cs0.15FA0.65MA0.20Pb(I0.8Br0.2)3 (CsFAMA) perovskite solar cell. TEACl was employed as a passivation layer between the perovskite and electron transport layer (ETL). With TEACl treatment, charged defects responsible for sub-band absorption and electrostatic potential fluctuation were effectively suppressed by the passivation of bulk defects. The incorporation of TEACl, which led to the formation of a TEA2PbX4/Perovskite (2D/3D) heterojunction, facilitated better band alignment and effective passivation of interface defects at the ETL/CsFAMA. Owing to these beneficial effects, the TEACl passivated PSC achieved a photo conversion efficiency (PCE) of 19.70% and retained ∼85% of initial PCE over ∼1900 h, surpassing the performance of the untreated PSC, which exhibited a PCE of 16.69% and retained only ∼37% of its initial PCE.

3.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617295

RESUMO

Focused ultrasound (FUS) stimulation is a promising neuromodulation technique with the merits of non-invasiveness, high spatial resolution, and deep penetration depth. However, simultaneous imaging of FUS-induced brain tissue displacement and the subsequent effect of FUS stimulation on brain hemodynamics has proven challenging thus far. In addition, earlier studies lack in situ confirmation of targeting except for the magnetic resonance imaging-guided FUS system-based studies. The purpose of this study is 1) to introduce a fully ultrasonic approach to in situ target, modulate neuronal activity, and monitor the resultant neuromodulation effect by respectively leveraging displacement imaging, FUS, and functional ultrasound (fUS) imaging, and 2) to investigate FUS-evoked cerebral blood volume (CBV) response and the relationship between CBV and displacement. We performed displacement imaging on craniotomized mice to confirm the in targeting for neuromodulation site. We recorded hemodynamic responses evoked by FUS and fUS revealed an ipsilateral CBV increase that peaks at 4 s post-FUS. We saw a stronger hemodynamic activation in the subcortical region than cortical, showing good agreement with the brain elasticity map that can also be obtained using a similar methodology. We observed dose-dependent CBV response with peak CBV, activated area, and correlation coefficient increasing with ultrasonic dose. Furthermore, by mapping displacement and hemodynamic activation, we found that displacement colocalizes and linearly correlates with CBV increase. The findings presented herein demonstrated that FUS evokes ipsilateral hemodynamic activation in cortical and subcortical depths and the evoked hemodynamic responses colocalized and correlate with FUS-induced displacement. We anticipate that our findings will help consolidate accurate targeting as well as an understanding of how FUS displaces brain tissue and affects cerebral hemodynamics.

4.
Adv Healthc Mater ; 13(14): e2303857, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38344923

RESUMO

Recently, mRNA-based therapeutics, including vaccines, have gained significant attention in the field of gene therapy for treating various diseases. Among the various mRNA delivery vehicles, lipid nanoparticles (LNPs) have emerged as promising vehicles for packaging and delivering mRNA with low immunogenicity. However, while mRNA delivery has several advantages, the delivery efficiency and stability of LNPs remain challenging for mRNA therapy. In this study, an ionizable helper cholesterol analog, 3ß[L-histidinamide-carbamoyl] cholesterol (Hchol) lipid is developed and incorporated into LNPs instead of cholesterol to enhance the LNP potency. The pKa values of the Hchol-LNPs are ≈6.03 and 6.61 in MC3- and SM102-based lipid formulations. Notably, the Hchol-LNPs significantly improve the delivery efficiency by enhancing the endosomal escape of mRNA. Additionally, the Hchol-LNPs are more effective in a red blood cell hemolysis at pH 5.5, indicating a synergistic effect of the protonated imidazole groups of Hchol and cholesterol on endosomal membrane destabilization. Furthermore, mRNA delivery is substantially enhanced in mice treated with Hchol-LNPs. Importantly, LNP-encapsulated SARS-CoV-2 spike mRNA vaccinations induce potent antigen-specific antibodies against SARS-CoV-2. Overall, incorporating Hchol into LNP formulations enables efficient endosomal escape and stability, leading to an mRNA delivery vehicle with a higher delivery efficiency.


Assuntos
Colesterol , Nanopartículas , RNA Mensageiro , SARS-CoV-2 , Animais , Colesterol/química , Colesterol/análogos & derivados , Nanopartículas/química , Camundongos , RNA Mensageiro/genética , Humanos , Histidina/química , Histidina/análogos & derivados , Lipídeos/química , COVID-19 , Vacinas contra COVID-19/química , Endossomos/metabolismo , Feminino , Hemólise/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Lipossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA