Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 1199, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347951

RESUMO

Antimicrobial peptides (AMPs) are cationic antibiotics that can kill multidrug-resistant bacteria via membrane insertion. However, their weak activity limits their clinical use. Ironically, the cationic charge of AMPs is essential for membrane binding, but it obstructs membrane insertion. In this study, we postulate that this problem can be overcome by locating cationic amino acids at the energetically preferred membrane surface. All amino acids have an energetically preferred or less preferred membrane position profile, and this profile is strongly related to membrane insertion. However, most AMPs do not follow this profile. One exception is protegrin-1, a powerful but neglected AMP. In the present study, we found that a potent AMP, WCopW5, strongly resembles protegrin-1 and that the match between its sequence and the preferred position profile closely correlates with its antimicrobial activity. One of its derivatives, WCopW43, has antimicrobial activity comparable to that of the most effective AMPs in clinical use.


Assuntos
Aminoácidos , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Antibacterianos/química , Cátions
2.
Biochem Biophys Res Commun ; 534: 359-366, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33256983

RESUMO

Paired Box (Pax) gene family, a group of transcription regulators have been implicated in diverse physiological processes. However, their role during hematopoiesis which generate a plethora of blood cells remains largely unknown. Using a previously reported single cell transcriptomics data, we analyzed the expression of individual Pax family members in hematopoietic cells in zebrafish. We have identified that Pax9, which is an essential regulator for odontogenesis and palatogenesis, is selectively localized within a single cluster of the hematopoietic lineage. To further analyze the function of Pax9 in hematopoiesis, we generated two independent pax9 knock-out mutants using the CRISPR-Cas9 technique. We found that Pax9 appears to be an essential regulator for granulopoiesis but dispensable for erythropoiesis during development, as lack of pax9 selectively decreased the number of neutrophils with a concomitant decrease in the expression level of neutrophil markers. In addition, embryos, where pax9 was functionally disrupted by injecting morpholinos, failed to increase the number of neutrophils in response to pathogenic bacteria, suggesting that Pax9 is not only essential for developmental granulopoiesis but also emergency granulopoiesis. Due to the inability to initiate emergency granulopoiesis, innate immune responses were severely compromised in pax9 morpholino-mediated embryos, increasing their susceptibility and mortality. Taken together, our data indicate that Pax9 is essential for granulopoiesis and promotes innate immunity in zebrafish larvae.


Assuntos
Eritropoese/imunologia , Mielopoese/imunologia , Fator de Transcrição PAX9/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Infecções Bacterianas/imunologia , Sistemas CRISPR-Cas , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Granulócitos/imunologia , Imunidade Inata/genética , Imunidade Inata/fisiologia , Mielopoese/genética , Fator de Transcrição PAX9/deficiência , Fator de Transcrição PAX9/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
3.
Biochem Biophys Res Commun ; 514(2): 497-502, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31056261

RESUMO

Cationic antimicrobial peptides (CAMPs) are important antibiotics because they possess a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, including those resistant to traditional antibiotics. The cyclic peptide bactenecin is a 12-amino acid CAMP that contains one intramolecular disulfide bond. To improve the antibacterial activity of bactenecin, we designed and synthesized several bactenecin analogs by applying multiple approaches, including amino acid substitution, use of the d-enantiomeric form, and lipidation. Among the synthetic analogs, d-enantiomeric bactenecin conjugated to capric acid, which we named dBacK-(cap), exhibited a significantly enhanced antibacterial spectrum with MIC values ranging from 1 to 8 µM against both Gram-positive and Gram-negative bacteria, including some drug-resistant bacteria. Upon exposure to dBacK-(cap), S. aureus cells were killed within 1 h at the MIC value, but full inactivation of E. coli required over 2 h. These results indicate that covalent addition of a d-amino acid and a fatty acid to bactenecin is the most effective approach for enhancing its antibacterial activity.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Antibacterianos/síntese química , Antibacterianos/química , Permeabilidade da Membrana Celular , Desenho de Fármacos , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/ultraestrutura , Bactérias Gram-Positivas/citologia , Bactérias Gram-Positivas/ultraestrutura , Cinética , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química
4.
Biochim Biophys Acta Biomembr ; 1861(1): 34-42, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30393205

RESUMO

The emergence of drug-resistant pathogenic bacteria threatens human health. Resistance to existing antibiotics is increasing, while the emergence of new antibiotics is slowing. Cationic antimicrobial peptides (CAMPs) are fascinating alternative antibiotics because they possess a broad spectrum of activity, being active against both Gram-positive and Gram-negative bacteria including those resistant to traditional antibiotics. However, low bioavailability resulting from enzymatic degradation and attenuation by divalent cations like Mg2+ and Ca2+ limits their use as antibiotic agents. Here, we report the design of new CAMPs showing both high antibacterial activity and serum stability under physiological ion concentrations. The peptides were designed by applying two approaches, the use of d-enantiomer and lipidation. Based on the sequence of the CopW (LLWIALRKK-NH2), a nonapeptide derived from coprisin, a series of novel d-form CopW lipopeptides with different acyl chain lengths (C6, C8, C10, C12, C14, and C16) were synthesized and evaluated with respect to their activity and salt sensitivity. Among the analogs, the d-form lipopeptide dCopW3 exhibited MIC values ranging from 1.25 to 5 µM against multidrug-resistant bacteria. Significantly, this compound did not induce bacterial resistance and was highly stable in human serum proteases. The results emphasize the potential of cationic d-form lipopeptide as therapeutically valuable antibiotics for treating drug-resistant bacterial infections.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Lipopeptídeos/farmacologia , Estereoisomerismo , Aminoácidos/química , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Cálcio/química , Bovinos , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos/química , Hemólise , Humanos , Cinética , Magnésio/química , Masculino , Testes de Sensibilidade Microbiana , Peptídeo Hidrolases/química , Soroalbumina Bovina/metabolismo , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA