Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(45): 13218-13224, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34738813

RESUMO

Owing to its abundance, high theoretical capacity, and low electrode potential, zinc is one of the most important metallic anodes for primary and secondary batteries such as alkaline and zinc-air batteries. In the operation of zinc-based batteries, passivation of the anode surface plays an essential role because the electrode potential of zinc is slightly below that of the hydrogen evolution reaction. Therefore, it is important to scrutinize the nature of the passivation film to achieve anticorrosion inside batteries. Herein, the potential-dependent formation and removal of the passivation film during the deposition and dissolution of zinc metal in aqueous electrolytes are detected via electrochemical quartz crystal microbalance analysis. Film formation was not noticeable in hydroxide-based electrolytes; however, sulfate-based electrolytes induced potential-dependent formation and removal of the passivation film, enabling a superior coulombic efficiency of 99.37% and significantly reducing the rate of corrosion of the zinc-metal anodes. These observations provide insights into the development of advanced electrolytes for safe and stable energy-storage devices based on zinc-metal anodes.

2.
J Phys Chem Lett ; : 5748-5757, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132551

RESUMO

The development of stable and efficient electrocatalysts is of key importance for the establishment of a sustainable society. The activity of a metal electrocatalyst is determined by its electrochemically active surface area and intrinsic activity, which can be increased using highly porous structures and heteroatomic doping, respectively. Herein, we propose a general strategy of generating mesopores and residual oxygen in metal electrocatalysts by reduction of metastable metal oxides using Ag2O3 electrodeposited onto carbon paper as a model system and demonstrating that the obtained multipurpose porous Ag electrocatalyst has high activity for the electroreduction of O2 and CO2. The presence of mesopores and residual oxygen is confirmed by electrochemical and spectroscopic techniques, and quantum mechanical simulations prove the importance of residual oxygen for electrocatalytic activity enhancement. Thus, the adopted strategy is concluded to allow the synthesis of highly active metal catalysts with controlled mesoporosity and residual oxygen content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA