RESUMO
Williams syndrome (WS) is a rare multisystemic disorder caused by recurrent microdeletions on 7q11.23, characterized by intellectual disability, distinctive craniofacial and dental features, and cardiovascular problems. Previous studies have explored the roles of individual genes within these microdeletions in contributing to WS phenotypes. Here, we report five patients with WS with 1.4 Mb-1.5 Mb microdeletions that include RFC2, as well as one patient with a 167 kb microdeletion involving RFC2 and six patients with intragenic variants within RFC2. To investigate the potential involvement of RFC2 in WS pathogenicity, we generate a rfc2 knockout (KO) zebrafish using CRISPR-Cas9 technology. Additionally, we generate a KO zebrafish of its paralog gene, rfc5, to better understand the functions of these RFC genes in development and disease. Both rfc2 and rfc5 KO zebrafish exhibit similar phenotypes reminiscent of WS, including small head and brain, jaw and dental defects, and vascular problems. RNA-seq analysis reveals that genes associated with neural cell survival and differentiation are specifically affected in rfc2 KO zebrafish. In addition, heterozygous rfc2 KO adult zebrafish demonstrate an anxiety-like behavior with increased social cohesion. These results suggest that RFC2 may contribute to the pathogenicity of Williams syndrome, as evidenced by the zebrafish model.
RESUMO
Purpose: Human breast milk (HBM) contains immune components that produced and delivered from the mother along with nutrients necessary for the baby. MicroRNA (miRNA) is a small noncoding RNA molecule, that is used as an ideal biomarker for diagnosis and prognosis of various diseases and are more abundant in HBM. We analyzed and compared the immune components and miRNAs of HBM. Methods: HBM were collected from 20 healthy breastfeeding mothers. We measured the amount of lactoferrin, lysozyme, and immunoglobulin A (IgA) and extracted the miRNAs from each breast milk samples. Next, the top 5 and bottom 5 expressed miRNAs were compared and analyzed based on the amounts of the 3 immune components. Results: The mean levels and ranges of lactoferrin, lysozyme, and IgA were 6.33 (2.24-14.77)×106 ng/mL, 9.90 (1.42-17.59)×107 pg/mL, and 6.64 (0.48-20.01)×105 ng/mL, respectively. The miRNAs concentration per 1 mL of skim milk was 40.54 (14.95-110.01) ng/µL. Comparing the bottom 5 and top 5 groups of each immune component, 19 miRNAs were significantly upregulated (6, 9, and 4 targeting lactoferrin, lysozyme, and IgA, respectively) and 21 were significantly downregulated (4, 9, and 8 targeting lactoferrin, lysozyme, and IgA, respectively). There were no miRNAs that were expressed significantly higher or lower in common to all 3 components. However, 2 and 3 miRNAs were commonly overexpressed and underexpressed, in the top 5 groups of lysozyme and IgA concentrations. Conclusion: We identified the immune components and miRNAs in breast milk and found that each individual has different ingredients.
RESUMO
To efficiently degrade organic pollutants, photocatalysts must be effective under both ultraviolet (UV) radiation and sunlight. We synthesized a series of new metal-organic frameworks by using mild hydrothermal conditions. These frameworks incorporate three distinct bipyridyl ligands: pyrazine (pyr), 4,4'-bipyridine (bpy), and 1,2-bis(4-pyridyl)ethane (bpe). The resulting compounds are denoted as [Cu(pyz)(H2O)2MF6], [Cu(bpy)2(H2O)2]·MF6, and [Cu(bpe)2(H2O)2]·MF6·H2O [M = Zr (1, 3, and 5) and Hf (2, 4, and 6)]. All six compounds exhibited a two-dimensional crystal structure comprising infinitely nonintersecting linear chains. Compound 3 achieved 100% degradation of methylene blue (MB) after 8 min under UV irradiation and 100 min under natural sunlight in the presence of H2O2 as the electron acceptor. For compound 5, 100% MB degradation was achieved after 120 min under sunlight and 10 min under UV light. Moreover, reactive radical tests revealed that the dominant species involved in photocatalytic degradation are hydroxyl (â¢OH), superoxide radicals (â¢O2-), and photogenerated holes (h+). The photodegradation process followed pseudo-first-order kinetics, with photodegradation rate constants of 0.362 min-1 (0.039 min-1) for 3 and 0.316 min-1 (0.033 min-1) for 5 under UV (sunlight) irradiation. The developed photocatalysts with excellent activity and good recyclability are promising green catalysts for degrading organic pollutants during environmental decontamination.
RESUMO
The effect of sigma-phase precipitation on plastic anisotropy of the equiatomic CoCrFeMnNi high-entropy alloy was investigated. Annealing at 700 °C after cold-rolling leads to the formation of the Cr-rich σ phase with a fraction of 2.7%. It is experimentally found that the planar anisotropy (∆r = -0.16) of the CoCrFeMnNi alloy annealed at 700 °C is two times lower than that of the alloy annealed at 800 °C (∆r = -0.35). This observation was further supported by measuring the earing profile of cup specimens after the deep drawing process. The plastic strain ratio, normal anisotropy, and planar anisotropy were also predicted using the visco-plastic self-consistent model. The results indirectly indicated that the reduction of plastic anisotropy in alloy annealed at 700 °C can be attributed to the formation of the σ phase.
RESUMO
INTRODUCTION: Indirect reduction of minimally invasive plate osteosynthesis (MIPO) can often result in delayed union in tibia fractures. This study evaluated several factors in MIPO in relation to bone union. HYPOTHESIS: We hypothesized that the fracture gap, plate - tibia distance, or working length would have a substantial effect on the tibia union rate. MATERIALS AND METHODS: Forty-one patients with simple diaphyseal or distal metaphyseal tibia fractures who underwent internal fixation surgery using the MIPO technique were divided into two groups: patients with delayed union and patients without delayed union. Non-actionable factors involving AO/OTA classification, fibula fracture and actionable factors including postoperative fracture gap, plate - tibia distance, working length in relation to parameters of bone union were compared between the two groups. Also cumulative rates of bone union and risk factors of delayed union according to variables of interest were investigated. RESULTS: AO/OTA classification, site of fibula fracture, postoperative fracture gap, working length, and bone union rate of the two groups significantly differed (p<0.05). The cumulative rate of bone union during 1-year follow-up according to 43A tibia fracture, distal fibula fracture, fracture gap, and working length significantly differed between the two groups (p<0.05). By univariate Cox proportional hazards model, 43A tibia fracture, distal fibula fracture, facture gap, and short working length were risk factors for delayed union (p<0.05). DISCUSSION: Non-actionable factors involving AO/OTA classification, distal fibula fracture and actionable factors including postoperative fracture gap, working length were significant factors affecting bone union after MIPO. The present study indicated that small fracture gap and long working length during MIPO might facilitate bone healing in tibia fracture. LEVEL OF EVIDENCE: IV; single-center retrospective cohort study.
Assuntos
Fraturas do Tornozelo , Fraturas da Fíbula , Fraturas Múltiplas , Fraturas da Tíbia , Humanos , Tíbia/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Consolidação da Fratura , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/cirurgia , Fraturas da Tíbia/etiologia , Fixação Interna de Fraturas/métodos , Placas Ósseas , Procedimentos Cirúrgicos Minimamente Invasivos/métodosRESUMO
Sensors on autonomous vehicles have inherent physical constraints. To address these limitations, several studies have been conducted to enhance sensing capabilities by establishing wireless communication between infrastructure and autonomous vehicles. Various sensors are strategically positioned within the road infrastructure, providing essential sensory data to these vehicles. The primary challenge lies in sensor placement, as it necessitates identifying optimal locations that minimize blind spots while maximizing the sensor's coverage area. Therefore, to solve this problem, a method for positioning multiple sensor systems in road infrastructure is proposed. By introducing a voxel grid, the problem is formulated as an optimization challenge, and a genetic algorithm is employed to find a solution. Experimental findings using lidar sensors are presented to demonstrate the efficacy of this proposed approach.
RESUMO
Hepatitis C virus (HCV) infections frequently recur after liver transplantation in patients with HCV-related liver diseases. Approximately 30% of these patients progress to cirrhosis within 5 years after surgery. In this study, we proposed an effective therapeutic strategy to overcome the recurrence of HCV. CRISPR-Cas9 was used to insert an expression cassette encoding an RNA aptamer targeting HCV NS5B replicase as an anti-HCV agent into adeno-associated virus integration site 1 (AAVS1), known as a "safe harbor," in a hepatocellular carcinoma cell line to confer resistance to HCV. The RNA aptamer expression system based on a dihydrofolate reductase minigene was precisely knocked in into AAVS1, leading to the stable expression of aptamer RNA in the developed cell line. HCV replication was effectively inhibited at both the RNA and protein levels in cells transfected with HCV RNA or infected with HCV. RNA immunoprecipitation and competition experiments strongly suggested that this HCV inhibition was due to the RNA aptamer-mediated sequestration of HCV NS5B. No off-target insertion of the RNA aptamer expression construct was observed. The findings suggest that HCV-resistant liver cells produced by genome editing technology could be used as a new alternative in the development of a treatment for HCV-induced liver diseases.
RESUMO
Heteroatom-doped transition metal-oxides of high oxygen evolution reaction (OER) activities interfaced with metals of low hydrogen adsorption energy barrier for efficient hydrogen evolution reaction (HER) when uniformly embedded in a conductive nitrogen-doped carbon (NC) matrix, can mitigate the low-conductivity and high-agglomeration of metal-nanoparticles in carbon matrix and enhances their bifunctional activities. Thus, a 3D mesoporous heterostructure of boron (B)-doped cobalt-oxide/cobalt-metal nanohybrids embedded in NC and grown on a Ni foam substrate (B-CoO/Co@NC/NF) is developed as a binder-free bifunctional electrocatalyst for alkaline water-splitting via a post-synthetic modification of the metal-organic framework and subsequent annealing in different Ar/H2 gas ratios. B-CoO/Co@NC/NF prepared using 10% H2 gas (B-CoO/Co@NC/NF [10% H2 ]) shows the lowest HER overpotential (196 mV) and B-CoO/Co@NC/NF (Ar), developed in Ar, shows an OER overpotential of 307 mV at 10 mA cm-2 with excellent long-term durability for 100 h. The best anode and cathode electrocatalyst-based electrolyzer (B-CoO/Co@NC/NF (Ar)(+)//B-CoO/Co@NC/NF (10% H2 )(-)) generates a current density of 10 mA cm-2 with only 1.62 V with long-term stability. Further, density functional theory investigations demonstrate the effect of B-doping on electronic structure and reaction mechanism of the electrocatalysts for optimal interaction with reaction intermediates for efficient alkaline water-splitting which corroborates the experimental results.
RESUMO
In this study, an ultra-high-resolution acoustic microscopy system capable of non-destructively evaluating defects that may occur in thin film structures was fabricated. It is an integrated system of the control module, activation module, and data acquisition system, in which an integrated control software for controlling each module was developed. The control module includes the mechanical, control, and ultrasonic parts. The activation module was composed of the pulser/receiver, and the data acquisition system included an A/D board. In addition, the integrated control software performs system operation and material measurement and includes an analysis program to analyze the obtained A-Scan signals in various ways. A through-silicon via (TSV) device, which is a semiconductor structure, was prepared to verify the performance of the developed system. The TSV device was analyzed using an ultra-high-resolution acoustic microscope. When the C-Scan images were analyzed, void defects with a size of 20 µm were detected at a depth of approximately 32.5 µm. A similar result could be confirmed when the cross section was measured using focused ion beam (FIB) microscopy.
RESUMO
A spontaneous crystallization of an uranium(VI)-organic coordination compound with sodium and 2-methoxybenzoate (2-mba) was observed in acidic solutions, and the solubility product, molecular vibrations, crystal structure, thermal stability, and emission properties of the atypically low-soluble U(VI) complex (Na[UO2(2-mba)3]·12H2O(s)) were fully investigated for the first time. A long-term solubility experiment and speciation modeling gave a solubility product of log Ks,0 = -12.18 ± 0.02 (T = 25 °C and I = 0.1 M NaClO4), and vibrational analyses confirmed the overall molecular structure of complex and the frequencies of characteristic stretching motions of uranyl moiety as well. The crystal quality of Na[UO2(2-mba)3]·12H2O(s) was improved by a digestion method, and X-ray diffraction analysis of the single crystalline specimen verified that the newly studied uranyl-organic compound contains one-dimensional channels with a diameter of 20 Å along the [001] direction; the sodium and water molecules are arranged in the channel structures. In the coordination environment around uranyl, three aromatic carboxylates are symmetrically bound in the equatorial plane of uranyl coplanarily, and the unit [UO2(2-mba)3]- complexes are further extended along the plane to form the layered-morphologies. The three-dimensional packing of [UO2(2-mba)3]- anions is driven by the parallel-displaced π-stacking of aromatic rings with a centroid-centroid distance of 3.7 Å. Additional thermogravimetric analysis confirmed that the Na[UO2(2-mba)3]·12H2O(s) is stable up to 250 °C, and dehydration and release of the organic ligand were subsequently observed beyond that temperature. Photoluminescence spectrum of the Na[UO2(2-mba)3]·12H2O(s) clearly displayed the characteristic U(VI) emission, and a band spacing between the ground electronic states of U(VI) uranyl was evaluated to be 831 ± 14 cm-1. Such detailed characterization of the unique Na[UO2(2-mba)3]·12H2O(s) is advancing upon a systematic understanding of the structural effects of the aromatic model ligands on U(VI) complexation, with relevance to the environmental chemistry of U(VI) and crystal engineering for development of diverse uranyl-organic frameworks.
RESUMO
Vanadium-based catalysts have been used for several decades in ammonia-based selective catalytic reduction (NH3-SCR) processes for reducing NOx emissions from various stationary sources (power plants, chemical plants, incinerators, steel mills, etc.) and mobile sources (large ships, automobiles, etc.). Vanadium-based catalysts containing various vanadium species have a high NOx reduction efficiency at temperatures of 350-400 °C, even if the vanadium species are added in small amounts. However, the strengthening of NOx emission regulations has necessitated the development of catalysts with higher NOx reduction efficiencies. Furthermore, there are several different requirements for the catalysts depending on the target industry and application. In general, the composition of SCR catalyst is determined by the components of the fuel and flue gas for a particular application. It is necessary to optimize the catalyst with regard to the reaction temperature, thermal and chemical durability, shape, and other relevant factors. This review comprehensively analyzes the properties that are required for SCR catalysts in different industries and the development strategies of high-performance and low-temperature vanadium-based catalysts. To analyze the recent research trends, the catalysts employed in power plants, incinerators, as well as cement and steel industries, that emit the highest amount of nitrogen oxides, are presented in detail along with their limitations. The recent developments in catalyst composition, structure, dispersion, and side reaction suppression technology to develop a high-efficiency catalyst are also summarized. As the composition of the vanadium-based catalyst depends mostly on the usage in stationary sources, various promoters and supports that improve the catalyst activity and suppress side reactions, along with the studies on the oxidation state of vanadium, are presented. Furthermore, the research trends related to the nano-dispersion of catalytically active materials using various supports, and controlling the side reactions using the structure of shaped catalysts are summarized. The review concludes with a discussion of the development direction and future prospects for high-efficiency SCR catalysts in different industrial fields.
RESUMO
OBJECTIVE: We aimed to investigate the improvement in sleep quantity and quality when clonidine was used in children and adolescents with insomnia. We also examined how sociodemographic characteristics such as age, sex, underlying psychological problems, and levels of depression and anxiety affected the effect of clonidine. METHODS: We retrospectively reviewed outpatients aged 6 to 24 who took clonidine due to insomnia from September 2019 to September 2021 at the Department of Psychiatry at Eunpyeong St. Mary's Hospital of Catholic University. We used the Pittsburgh Sleep Quality Index (PSQI), Children's Depression Inventory (CDI), and State-Trait Anxiety Inventory (STAI) for our study. RESULTS: A total of 62 participants were included in our study (34 females, mean age 13.94±4.94 years). After using clonidine, there was a significant decrease in PSQI components 1, 2, and 5, especially PSQI component 2. There was a greater decrease in sleep latency when clonidine was used in females, those aged between 13 and 24, those with mood/anxiety disorder or attention-deficit/hyperactivity disorder, those whose sleep latency exceeded 60 minutes at baseline, and those who used clonidine for more than 14 days. Those with higher STAI-Trait scores and CDI scores at baseline showed less improvement in total PSQI scores. CONCLUSION: Considering that there are currently no Food and Drug Administration-approved sleep drugs for children and adolescents and no apparent difference in efficacy and safety among sleep drugs, we demonstrated that treatment with clonidine might be a good approach to improve sleep quality and quantity for children and adolescents.
RESUMO
The temperature-dependent reaction properties of actinide elements are of particular interest in the safety assessment of high-level radioactive waste (HLRW) disposal systems. In this study, the hydrolysis of Pu(III) and the solubility of Pu(OH)3(am) were investigated at various temperatures (10-40 °C) in 0.1 M NaClO4. A strong reducing condition for maintaining the oxidation state of Pu(III) while slowly increasing the pH of the solution was realized by electrolysis. The formation constants of the first hydrolysis species, log *ß1', and the solubility products of Pu(OH)3(am), log *Ks,0', at 10, 17, and 40 °C were experimentally determined using spectrophotometry, laser-induced breakdown detection, and radiometry. The enthalpy and entropy changes for these reactions were estimated using the van't Hoff equation. The first hydrolysis of Pu(III) is endothermic (ΔrHm° = 34.10 ± 4.48 kJ mol-1), and the dissolution of Pu(OH)3(am) is exothermic (ΔrHm° = -294.29 ± 23.05 kJ mol-1) with negative entropy changes. These thermodynamic data will contribute to improving the reliability of the safety assessment of HLRW disposal facilities and understanding the geochemical behavior of Pu under reducing or anoxic aqueous conditions at elevated temperatures.
RESUMO
This study aims to increase the specific surface area of multi-walled carbon nanotubes (MWCNTs) by forming and subsequently removing various metal oxide nanoparticles on them. We used facile methods, such as forming the particles without using a vacuum or gas and removing these particles through simple acid treatment. The shapes of the composite structures on which the metal oxide particles were formed and the formation of multi-vacancy-defect MWCNTs were confirmed via transmission electron microscopy and scanning electron microscopy. The crystallinity of the formed metal oxide particles was confirmed using X-ray diffraction analysis. Through specific surface area analysis and Raman spectroscopy, the number of defects formed and the degree and tendency of defect-formation in each metal were determined. In all the cases where the metal oxide particles were removed, the specific surface area increased, and the metal inducing the highest specific surface area was determined.
RESUMO
Viral infections can be fatal and consequently, they are a serious threat to human health. Therefore, the development of vaccines and appropriate antiviral therapeutic agents is essential. Depending on the virus, it can cause an acute or a chronic infection. The characteristics of viruses can act as inhibiting factors for the development of appropriate treatment methods. Genome editing technology, including the use of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), is a technology that can directly target and modify genomic sequences in almost all eukaryotic cells. The development of this technology has greatly expanded its applicability in life science research and gene therapy development. Research on the use of this technology to develop therapeutics for viral diseases is being conducted for various purposes, such as eliminating latent infections or providing resistance to new infections. In this review, we will look at the current status of the development of viral therapeutic agents using genome editing technology and discuss how this technology can be used as a new treatment approach for viral diseases.
Assuntos
Edição de Genes , Viroses , Genoma , Humanos , Tecnologia , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Viroses/genética , Viroses/terapiaRESUMO
BACKGROUND: Human breast milk is essential and provides irreplaceable nutrients for early humans. However, breastfeeding is not easy for various reasons in medical institution environments. Therefore, in order to improve the breastfeeding environment, we investigated the difficult reality of breastfeeding through questionnaire responses from medical institution workers. METHODS: A survey was conducted among 179 medical institution workers with experience in childbirth within the last five years. The survey results of 175 people were analyzed, with incoherent answers excluded. RESULTS: Of the 175 people surveyed, a total of 108 people (61.7%) worked during the day, and 33 people (18.9%) worked in three shifts. Among 133 mothers who stayed with their babies in the same nursing room, 111 (93.3%) kept breastfeeding for more than a month, but among those who stayed apart, only 10 (71.4%) continued breastfeeding for more than a month (P = 0.024). Ninety-five (88.0%) of daytime workers, 32 (94.1%) two-shift workers, and 33 (100%) three-shift workers continued breastfeeding for more than a month (P = 0.026). Workers in general hospitals tended to breastfeed for significantly longer than those that worked in tertiary hospitals (P = 0.003). A difference was also noted between occupation categories (P = 0.019), but a more significant difference was found in the comparison between nurses and doctors (P = 0.012). Longer breastfeeding periods were noted when mothers worked three shifts (P = 0.037). Depending on the period planned for breastfeeding prior to childbirth, the actual breastfeeding maintenance period after birth showed a significant difference (P = 0.002). Of 112 mothers who responded to the question regarding difficulties in breastfeeding after returning to work, 87 (77.7%) mentioned a lack of time caused by being busy at work, 82 (73.2%) mentioned the need for places and appropriate circumstances. CONCLUSION: In medical institutions, it is recommended that environmental improvements in medical institutions, the implementation of supporting policies, and the provision of specialized education on breastfeeding are necessary to promote breastfeeding.
Assuntos
Aleitamento Materno , Mães , Feminino , Pessoal de Saúde , Humanos , Lactente , República da Coreia , Inquéritos e QuestionáriosRESUMO
The hippocampus, which engages in the process of consolidating long-term memories and learning, shows active development during childhood and adolescence. The hippocampus also functionally influences attention. Based on the influence of hippocampal function on attention, it was expected that the volume of the hippocampus would be associated with the difference in attention during childhood and adolescence, in which the brain develops actively. Thus, this study examined the association between hippocampal volume and attention metrics measured by the continuous performance test (CPT) in 115 children and adolescents (mean age = 12.43 ± 3.0, 63 male and 52 female). In association studies with both auditory and visual attention, we found that the bilateral hippocampal volumes showed negative relationships with auditory omission errors. A smaller volume of the left hippocampus also led to a longer auditory response time. However, visual attention did not show any significant relationship with the hippocampal volume. These findings were consistent even after adjusting for the effects of the related covariates (e.g., age, insomnia, and depression). Taken together, this study suggested that the increase in hippocampal volume during childhood and adolescence was associated significantly with better auditory attention.
RESUMO
We provide the material synthesis method, crystal structure information, and characterization of a novel mixed-valent metal oxide KIn0.33IIITe0.67VITe2IVO7, closely related to zirconolite (CaZrTi2O7), a radioactive waste immobilized material, having a 3D framework. The reported metal oxide containing an alkali-metal cation (K+), main-group cation (In3+), tellurate, and tellurite has been synthesized as both single crystals and a pure polycrystalline phase through a hydrothermal synthesis method. Single-crystal X-ray diffraction indicates that KIn0.33Te2.67O7 crystallizing in the orthorhombic space group Cmcm (No. 63) reveals a 3D framework structure with a 1D channel consisting of Te/InO6 octahedra and TeO4 polyhedra. An interesting transition reaction from KIn0.33Te2.67O7 to KIn(TeO3)2 under hydrothermal conditions at 230 °C is discussed.
RESUMO
In the study reported herein, silver-coated copper (Ag/Cu) powder was modified with alkanethiols featuring alkyl chains of different lengths, namely butyl, octyl, and dodecyl, to improve its thermal stability. The modification of the Ag/Cu powders with adsorbed alkanethiols was confirmed by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Each powder was combined with an epoxy resin to prepare an electrically conductive film. The results confirmed that the thermal stability of the films containing alkanethiol-modified Ag/Cu powders is superior to that of the film containing untreated Ag/Cu powder. The longer the alkyl group in the alkanethiol-modified Ag/Cu powder, the higher the initial resistance of the corresponding electrically conductive film and the lower the increase in resistance induced by heat treatment.
RESUMO
Many trials have been conducted to treat atopic dermatitis (AD), but these therapies are generally unsuccessful because of their insufficiency or side effects. This study examined the efficacy of ß-glucan derived from oats with fermented probiotics (called Synbio-glucan) on an AD-induced mouse model. For the experiment, Nc/Nga mice were exposed to a house dust mite extract (HDM) to induce AD. The mice were placed in one of four groups: positive control group, Synbio-glucan topical treatment group, Synbio-glucan dietary treatment group, and Synbio-glucan topical + dietary treatment group. The experiment revealed no significant difference in the serum IgE concentration among the groups. Serum cytokine antibody arrays showed that genes related to the immune response were enriched. A significant difference in the skin lesion scores was observed between the groups. Compared to the control group tissue, skin lesions were alleviated in the Synbio-glucan topical treatment group and Synbio-glucan dietary treatment group. Interestingly, almost normal structures were observed within the skin lesions in the Synbio-glucan topical + dietary treatment group. Overall, the ß-glucan extracted from oats and fermented probiotic mixture is effective in treating atopic dermatitis.