Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(15): 8194-8204, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38584470

RESUMO

Capillary-driven heat pipes are an effective thermal solution for compacting electronic cooling systems. We advance such a heat pipe thermal solution with ultralightweighting for mobile applications. In our advancement, the envelope that encapsulates the phase-change process of a working fluid is fabricated via electroless plating being ∼40 µm thick. Furthermore, the wick structure that transports condensate to a heat source via capillarity is also electroless-plated onto the envelope's inner surfaces, creating a 100-µm-thick, microporous layer. This wick structure is sequentially superhydrophilized by blackening that forms a nanotexture on the microporous wick layer. An effective density of our prototype ultralight heat pipes (uHPs), as a measure of lightweighting, indicates, on average, a remarkable 73% weight reduction of commercial counterparts with sintered copper powder wick in similar exterior dimensions (e.g., ∼2.7 g, compared to ∼10.0 g) while providing equivalent heat spreading. Furthermore, the uHP operates at a 25% lower evaporator temperature, due to additional heat rejection to the surroundings through the ultrathin-walled envelope and wick.

2.
Phys Rev E ; 106(1-1): 014405, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974577

RESUMO

During descent, a single-winged maple seed (samara) can naturally reach a delicate equilibrium state, stable autorotation, before landing. This article reveals the intrinsic equilibrium of a particular type of samaras in terms of measurable aerodynamic and geometric parameters. To this end, we conducted a series of in situ measurements for the rate of vertical descent (exclusive of crosswind) of an autorotating samara in a natural range of samara sizes and masses. We then extended the range of size and mass by introducing artificial samaras, with discrete mass elements purposely designed to approximate the asymmetrical and nonuniform distribution of mass found with natural samaras. Based on the widened range, a fundamental nondimensional correlation of dynamic pressure and disc loading was generalized, where all stable autorotation descent profiles collapse to a single descent characteristic curve, irrespective of the size and mass of the natural and artificial samara's specimens. Results reveal that for stably autorotating (both natural and artificial) samaras, their terminal descent velocity (expressed as dynamic pressure) and disc loading attained equilibrium at a value that is inversely proportional to the coefficient of lift.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA