Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627832

RESUMO

The use of equipment such as dental handpieces and ultrasonic tips in the dental environment has potentially heightened the generation and spread of aerosols, which are dispersant particles contaminated by etiological factors. Although numerous types of personal protective equipment have been used to lower contact with contaminants, they generally do not exhibit excellent removal rates and user-friendliness in tandem. To solve this problem, we developed a prototype of an air-barrier device that forms an air curtain as well as performs suction and evaluated the effect of this newly developed device through a simulation study and experiments. The air-barrier device derived the improved design for reducing bioaerosols through the simulation results. The experiments also demonstrated that air-barrier devices are effective in reducing bioaerosols generated at a distance in a dental environment. In conclusion, this study demonstrates that air-barrier devices in dental environments can play an effective role in reducing contaminating particles.

2.
Nanoscale Adv ; 5(14): 3619-3628, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37441262

RESUMO

We fabricated graphene oxide (GO)-incorporated polylactic acid (PLA) (GO-PLA) films by using three-dimensional (3D) printing to explore their potential benefits as barrier membranes for guided bone regeneration (GBR). Our results showed that the 3D printed GO-PLA films provided highly favorable matrices for preosteoblasts and accelerated new bone formation in rat calvarial bone defect models.

3.
Clin Orthop Surg ; 15(2): 182-191, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37008963

RESUMO

Background: This study aimed to compare the mechanical characteristics of four fixation methods including an anatomical suprapectineal quadrilateral surface (QLS) plate in hemipelvic models of anterior column-posterior hemitransverse acetabular fractures typical in elderly patients. Methods: In total, 24 composite hemipelvic models were used and allocated to four groups: group 1, pre-contoured anatomical suprapectineal QLS plate; group 2, suprapectineal reconstruction plate with two periarticular long screws; group 3, suprapectineal reconstruction plate with a buttress reconstruction plate; group 4, suprapectineal reconstruction plate with a buttress T-plate. Axial structural stiffness and displacement of each column fragment in four different fixation constructs were compared. Results: Multiple group comparisons of axial structural stiffness demonstrated significant difference (p = 0.001). Although there was no significant difference between groups 1 and 2 (p = 0.699), group 1 showed greater stiffness than groups 3 and 4 (p = 0.002 and 0.002, respectively). Group 1 showed less displacement in the anterior region of the anterior fragment than group 4 (p = 0.009) and in the posterior region than groups 3 and 4 (p = 0.015 and p = 0.015, respectively). However, group 1 demonstrated greater displacement than group 2 in the posterior region of the posterior fragment (p = 0.004), while showing similar displacement to groups 3 and 4. Conclusions: The anatomical suprapectineal QLS plate provided the mechanical stability comparable or superior to other existing fixations in osteoporotic models of anterior column-posterior hemitransverse acetabular fractures typical in the elderly. However, additional plate modification would be needed for better stability and outcomes.


Assuntos
Fraturas Ósseas , Fraturas do Quadril , Fraturas da Coluna Vertebral , Humanos , Idoso , Fraturas Ósseas/cirurgia , Fixação Interna de Fraturas/métodos , Acetábulo/cirurgia , Acetábulo/lesões , Parafusos Ósseos , Fenômenos Biomecânicos , Fraturas do Quadril/cirurgia , Placas Ósseas
4.
Bioengineering (Basel) ; 9(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290451

RESUMO

(1) Background: The stability of implants plays a significant role in the success of osseointegration. The stability of the connection between the fixture and the abutment is one of the critical factors affecting osseointegration. When restoring multiple, non-parallel, and splinted implants, achieving a passive fit can be complicated and challenging. A new EZ post non-engaging abutment system of the BlueDiamond® (BD) implant allows a wide connection angle while achieving a passive prosthesis fit. This study aimed to confirm the new abutment system's clinical applicability by evaluating its biomechanical characteristics using finite element analysis (FEA). (2) Methods: The implant-supported fixed three-unit dental prostheses model was reproduced for two groups of AnyOne® (AO) and BD implants using FEA. The loading conditions were a preload of 200 N in the first step and loads of 100 N (axial), 100 N (15°), or 30 N (45°) in the second step. (3) Results: The peak Von Mises stress (PVMS) value of the fixture in the BD group was more than twice that in the AO group. In contrast, the PVMS values of the abutment and abutment screws were lower in the BD group than in the AO group. The AO group revealed higher maximal principal stress (MPS) values than that of the BD group in the cortical bone, cancellous bone, and crown. The average stress of the outer surface of the abutment was lower in the AO group than in the BD group. The stress distribution for the inner surface of the fixture confirmed that the BD group displayed a lower stress distribution than the AO group under axial and 15° loads; however, the average stress was 1.5 times higher at the 45° load. The stress values of the entire surface where the cortical and cancellous bone were in contact with the fixture were measured. The AO group showed a higher stress value than the BD group in both cortical and cancellous bone. (4) Conclusions: In the AO group, the PVMS value of the fixture and the stress distribution at the contact surface between the fixture and the abutment were lower than those of the BD group, suggesting that the stability of the fixture would be high. However, due to the high stress in the fastening area of the abutment and abutment screw, the risk of abutment fracture in the AO group is higher than that of the BD group. Therefore, the new EZ post non-engaging abutment of the BD implant can be used without any problems in clinics, similar to the non-engaging abutment of the AO implant, which has been widely used in clinical practice.

5.
Chem Asian J ; 17(18): e202200620, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35866189

RESUMO

Recent advances in three-dimensional (3D) bioprinting technologies have enabled the fabrication of sophisticated live 3D tissue analogs. Despite the existing hydrogel-based bioinks, the development of advanced bioink materials that can accurately reproduce the composition of a native extracellular matrix and mimic the intrinsic properties of laden cells remains challenging. In this study, 3D printed skin equivalents incorporating hair follicle structures and epidermal/papillary dermal layers were fabricated using gelatin methacryloyl/hyaluronic acid methacryloyl (GelMA/HAMA) bioink. The composition of collagen and glycosaminoglycan in native skin was recapitulated by adjusting the combination of GelMA and HAMA. The GelMA/HAMA bioink exhibited excellent viscoelastic and physicochemical properties, 3D printability, cytocompatibility, and functionality to maintain hair-inductive potency while facilitating spontaneous hair pore development. The results indicate that GelMA/HAMA hydrogels are promising candidates as bioinks for the 3D printing of skin equivalents. Furthermore, they may serve as useful models for skin tissue engineering and regeneration.


Assuntos
Gelatina , Hidrogéis , Gelatina/química , Folículo Piloso , Ácido Hialurônico , Hidrogéis/química , Metacrilatos , Impressão Tridimensional , Engenharia Tecidual/métodos
6.
Biomolecules ; 13(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36671440

RESUMO

Three-dimensional (3D) bioprinted skin equivalents are highlighted as the new gold standard for alternative models to animal testing, as well as full-thickness wound healing. In this review, we focus on the advances and innovations of 3D bioprinting skin for skin regeneration, within the last five years. After a brief introduction to skin anatomy, 3D bioprinting methods and the remarkable features of recent studies are classified as advances in materials, structures, and functions. We will discuss several ways to improve the clinical potential of 3D bioprinted skin, with state-of-the-art printing technology and novel biomaterials. After the breakthrough in the bottleneck of the current studies, highly developed skin can be fabricated, comprising stratified epidermis, dermis, and hypodermis with blood vessels, nerves, muscles, and skin appendages. We hope that this review will be priming water for future research and clinical applications, that will guide us to break new ground for the next generation of skin regeneration.


Assuntos
Bioimpressão , Engenharia Tecidual , Animais , Bioimpressão/métodos , Impressão Tridimensional , Pele , Epiderme
7.
Materials (Basel) ; 14(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34501017

RESUMO

Clear aligner technology has become the preferred choice of orthodontic treatment for malocclusions for most adult patients due to their esthetic appeal and comfortability. However, limitations exist for aligner technology, such as corrections involving complex force systems. Composite attachments on the tooth surface are intended to enable active control of tooth movements. However, unintended tooth movements still occur. In this study, we present an effective attachment design of an attachment that can efficiently induce tooth movement by comparing and analyzing the movement and rotation of teeth between a general attachment and an overhanging attachment. The 3D finite element modes were constructed from CBCT data and used to analyze the distal displacement of the central incisor using 0.5- and 0.75-mm-thick aligners without an attachment, and with general and overhanging attachments. The results show that the aligner with the overhanging attachment can effectively reduce crown tipping and prevent axial rotation for an intended distal displacement of the central incisor. In all models, an aligner with or without attachments was not capable of preventing the lingual inclination of the tooth.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34360272

RESUMO

Nowadays, medical facilities are developing their treatment environment to provide better services to their patients. In particular, dental hospitals have been considered uncomfortable and uninviting spaces, which needs to change so that people can visit easily and feel more relaxed. However, only a few systematic studies have reported on the demand for building a comfortable space. This study aimed to investigate gaze characteristics based on a color preference survey of the dental unit chair, which has the most influence on spatial perception in the dental treatment environment, using an eye tracking technique for color. The results of this study showed that the color perception by eye tracking and the color preference by survey did not tend to match. The color most viewed by a majority of subjects was pink, which attracted a high level of attention, regardless of personal preference. In addition, for the psychological color images associated with color preference, the subjects tended to prefer images such as warmth, friendliness, and calmness. This appeared to reflect the psychology of the subjects who wished to replace their feelings of anxiety or fear when going to the dental hospital with comfort and tranquility. Therefore, colors that can provide comfort and tranquility to patients should be considered first as visual elements (e.g., brown) in creating a dental treatment environment.


Assuntos
Percepção de Cores , Tecnologia de Rastreamento Ocular , Atenção , Cor , Assistência Odontológica , Humanos , Percepção Espacial
9.
PLoS One ; 16(7): e0253862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197561

RESUMO

A finite element analysis was performed to evaluate the stresses around nails and cortical bones in subtrochanteric (ST) fracture models fixed using short cephalomedullary nails (CMNs). A total 96 finite element models (FEMs) were simulated on a transverse ST fracture at eight levels with three different fracture gaps and two different distal locking screw configurations in both normal and osteoporotic bone. All FEMs were fixed using CMNs 200 mm in length. Two distal locking screws showed a wider safe range than 1 distal screw in both normal and osteoporotic bone at fracture gaps ≤ 3 mm. In normal bone FEMs fixed even with two distal locking screws, peak von Mises stresses (PVMSs) in cortical bone and nail constructs reached or exceeded 90% of the yield strength at fracture levels 50 mm and 0 and 50 mm, respectively, at all fracture gaps. In osteoporotic bone FEMs, PVMSs in cortical bone and nail constructs reached or exceeded 90% of the yield strength at fracture levels 50 mm and 0 and 50 mm, respectively, at a 1-mm fracture gap. However, at fracture gaps ≥ 2 mm, PVMSs in cortical bone reached or exceeded 90% of the yield strength at fracture levels ≥ 35 mm. PVMSs in nail showed the same results as 1-mm fracture gaps. PVMSs increased and safe range reduced, as the fracture gap increased. Short CMNs (200 mm in length) with two distal screws may be considered suitable for the fixation of ST transverse fractures at fracture levels 10 to 40 mm below the lesser trochanter in normal bone and 10 to 30 mm in osteoporotic bone, respectively, under the assumptions of anatomical reduction at fracture gap ≤ 3 mm. However, the fracture gap should be shortened to the minimum to reduce the risk of refracture and fixation failure, especially in osteoporotic fractures.


Assuntos
Pinos Ortopédicos , Osso Cortical/lesões , Fixação Intramedular de Fraturas/instrumentação , Fraturas do Quadril/cirurgia , Osteoporose/cirurgia , Fenômenos Biomecânicos , Parafusos Ósseos , Osso Cortical/patologia , Osso Cortical/cirurgia , Análise de Elementos Finitos , Fraturas do Quadril/etiologia , Fraturas do Quadril/patologia , Humanos , Osteoporose/complicações , Osteoporose/patologia
10.
Materials (Basel) ; 14(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435457

RESUMO

Lately, in orthodontic treatments, the use of transparent aligners for the correction of malocclusions has become prominent owing to their intrinsic advantages such as esthetics, comfort, and minimal maintenance. Attempts at improving upon this technology by varying various parameters to investigate the effects on treatments have been carried out by several researchers. Here, we aimed to investigate the biomechanical and clinical effects of aligner thickness on stress distributions in the periodontal ligament and changes in the tooth's center of rotation. Dental finite element models comprising the cortical and cancellous bones, gingiva, teeth, and nonlinear viscoelastic periodontal ligaments were constructed, validated, and used together with aligner finite element models of different aligner thicknesses to achieve the goal of this study. The finite element analyses were conducted to simulate the actual orthodontic aligner treatment process for the correction of malocclusions by generating pre-stresses in the aligner and allowing the aligner stresses to relax to induce tooth movement. The results of the analyses showed that orthodontic treatment in lingual inclination and axial rotation with a 0.75 mm-thick aligner resulted in 6% and 0.03% higher principal stresses in the periodontal ligament than the same treatment using a 0.05 mm-thick aligner, respectively. Again, for both aligner thicknesses, the tooth's center of rotation moved lingually and towards the root direction in lingual inclination, and diagonally from the long axis of the tooth in axial rotation. Taken together, orthodontic treatment for simple malocclusions using transparent aligners of different thicknesses will produce a similar effect on the principal stresses in the periodontal ligament and similar changes in the tooth's center of rotation, as well as sufficient tooth movement. These findings provide orthodontists and researchers clinical and biomechanical evidence about the effect of transparent aligner thickness selection and its effect on orthodontic treatment.

11.
Materials (Basel) ; 13(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019762

RESUMO

Bone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous microstructure that increases blood vessels and bone formation, and shows faster bone formation than other types of bone graft materials. We observed new bone tissue formation and bone remodeling using Ti-oss® (Chiyewon Co., Ltd., Guri, Korea), a heterologous bone graft material. Using a Sprague-Dawley rat calvarial defect model to evaluate the bone healing effect of biomaterials, the efficacy of the newly developed xenograft Ti-oss® and Bio-Oss® (Geistilch Pharma AG, Wolhusen, Switzerland). The experimental animals were sacrificed at 8 and 12 weeks after surgery for each group and the experimental site was extracted. The average new bone area for the Ti-oss® experimental group at 8 weeks was 17.6%. The remaining graft material was 22.7% for the experimental group. The average new bone area for the Ti-oss® group was 24.3% at 12 weeks. The remaining graft material was 22.8% for the experimental group. It can be evaluated that the new bone-forming ability of Ti-oss® with octacalcium phosphate (OCP) has the bone-forming ability corresponding to the conventional products.

12.
PLoS One ; 15(10): e0240352, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33031474

RESUMO

Fixation materials used in the surgical treatment of subcondylar fractures contribute to successful clinical outcomes. In this study, we simulated the mechanical properties of four fixation materials [titanium (Ti), magnesium alloy (Mg alloy), poly-L-lactic acid (PLLA), and hydroxyapatite/poly-L-lactide (HA-PLLA)] in a finite-element analysis model of subcondylar fracture. Two four-hole plates were fixed on the anterior and posterior surfaces of the subcondyle of the mandible. In the simulation model of a subcondylar fracture, we evaluated the stress distribution and mechanical deformation of fixation materials. The stress distribution conspicuously appeared on the condylar neck of the non-fractured side and the center of the anterior plate for all materials. More stress distribution to the biologic component appeared with HA-PLLA than with Ti or Mg alloy, but its effects were less prominent than that of PLLA. The largest deformation was observed with PLLA, followed by HA-PLLA, Mg alloy, and Ti. The results of the present study imply the clinical potential of the HA-PLLA fixation material for open reduction of subcondylar fractures.


Assuntos
Parafusos Ósseos , Análise de Elementos Finitos , Fraturas Mandibulares/cirurgia , Implantes Absorvíveis , Ligas/química , Durapatita/química , Módulo de Elasticidade , Fixação Interna de Fraturas/métodos , Humanos , Poliésteres/química , Resistência à Tração , Titânio/química
13.
Materials (Basel) ; 13(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751305

RESUMO

Malocclusion is considered as a developmental disorder rather than a disease, and it may be affected by the composition and proportions of masseter muscle fibers. Orthodontics is a specialty of dentistry that deals with diagnosis and care of various irregular bite and/or malocclusion. Recent developments of 3D scanner and 3D printing technology has led to the use of a removable thermoplastic aligner (RTA), which is widely used due to its aesthetic excellence, comfortableness, and time efficiency. However, orthodontics using only an RTA has lower treatment efficacy and accuracy due to the differing movement of teeth from the plan. In order to improve these disadvantages, attachments were used, and biomechanical analyses were performed with and without them. However, there is insufficient research on the movement of teeth and the transfer of load according to the attachment position and shape. Therefore, in our study, we aimed to identify the optimal shape and position of attachments by analyzing various shapes and positions of attachments. Through 3D finite element analysis (FEA), simple tooth shape and mandibular canine shape were extracted in order to construct the orthodontics model which took into account the various shapes and positions of attachments. The optimal shape of a cylinder was derived through the FEA of simple tooth shape and analyzing various positions of attachments on teeth revealed that fixing the attachments at the lingual side of the tooth rather than the buccal side allowed for torque control and an effective movement of the teeth. Therefore, we suggest fixing the attachments at the lingual side rather than the buccal side of the tooth to induce effective movement of teeth in orthodontic treatment with the RTA in case of canine teeth.

14.
Materials (Basel) ; 13(9)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349333

RESUMO

The study was designed to evaluate the effects of a liquid-type scanning-aid material on the accuracy and time efficiency of intraoral digital impressions compared to those of two different types of powder scanning-aid material and the powder-free scanning method. Three reference models (inlay, onlay, and bridge) were fabricated by a 3D printer and scanned with a model scanner to make the reference datasets. Four experimental groups (application of ScanCure, VITA, IP, and no treatment) were established, and the scans were acquired (each n = 5) using the Trios 3® (3 Shape, Copenhagen, Denmark). All scan data were digitally superimposed with the reference data (trueness, n = 5), and group comparisons were performed for each group (precision, n = 10). Time efficiency was evaluated by comparing the working times for scanning the models. The liquid-type ScanCure group showed fewer errors than the IP and VITA groups in all three reference models. Particularly, in the inlay model, the ScanCure group showed high accuracy compared to the powder-type groups (IP and VITA) with statistical significance (p < 0.001). The working time of the no-treatment group was longer than that of the agent groups in all reference models (p < 0.001). Notably, in the bridge model, the working time of the ScanCure group was shorter than that of the IP and VITA groups. Unlike other spray-type scanning-aid materials, this liquid-type material has the advantage of being thinly and uniformly applied to the object surface at the time of use. These findings suggest that the liquid-type scanning-aid material would be more accurate in achieving shape reproducibility using an intraoral scanner than the other two spray-type groups.

15.
Materials (Basel) ; 13(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230822

RESUMO

Mechanical testing based on ISO 14801 standard is generally used to evaluate the performance of the dental implant system according to material and design changes. However, the test method is difficult to reflect on the clinical environment because the ISO 14801 standard does not take into account the various loads from different directions during chewing motion. In addition, the fracture pattern of the implant system can occur both in the horizontal and the vertical directions. Therefore, the purpose of this study was to compare fatigue characteristics and fracture patterns between single directional loading conditions based on the ISO 14801 standard and multi-directional loading condition. Firstly, the static test was performed on five specimens to derive the fatigue load, and the fatigue load was chosen as 40% of the maximum load measured in the static test. Subsequently, the fatigue test was performed considering the single axial/occlusal (AO), AO with facial/lingual (AOFL) and AO with mesial/distal (AOMD) directions, and five specimens were used for each fatigue loading modes. In order to analyze the fatigue characteristics, the fatigue cycle at the time of specimen fracture and displacement change of the specimen every 500 cycles were measured. Field emission scanning electron microscopy (FE-SEM) was used to analyze the fracture patterns and the fracture surface. Compared to the AO group, the fatigue cycle of the AOFL and AOMD groups showed lower about five times, while the displacement gradually increased with every 500 cycles. From FE-SEM results, there were no different surface morphology characteristics among three groups. However, the AOMD group showed a vertical slip band. Therefore, our results suggest that the multi-directional loading mode under the worst-case environment can reproduce the vertical fracture pattern in the clinical situation and may be essential to reflect on the dental implant design including connection types and surface treatments.

16.
Materials (Basel) ; 13(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947998

RESUMO

Recently, a hydroxyapatite particle/poly-L-lactide (HA-PLLA) composite device was introduced as an alternative to previous fixation systems. In this study, we used finite element analysis to simulate peak von Mises stress (PVMS) and deformation of bone plates and screws with the following four materials-Ti, Mg alloy, PLLA, and HA-PLLA-at a unilateral mandibular fracture. A three-dimensional virtual mandibular model was constructed, and the fracture surface was designed to run from the left mandibular angle. Masticatory loading was applied on the right first molars. Stress was concentrated at the upper part and the neck of the screw. The largest PVMS was observed for Ti; that was followed by Mg alloy, HA-PLLA, and PLLA. The largest deformation was observed for PLLA; next was HA-PLLA, then Mg alloy, and finally Ti. We could rank relative superiority in terms of mechanical properties. The HA-PLLA screw and mini-plate deformed less than 0.15 mm until 300 N. Thus, we can expect good bone healing with usual masticatory loading six weeks postoperatively. HA-PLLA is more frequently indicated clinically than PLLA owing to less deformation. If the quality of HA-PLLA fixation is improved, it could be widely utilized in facial bone trauma or craniofacial surgery.

17.
Injury ; 50(11): 1883-1888, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31431331

RESUMO

OBJECTIVES: This study was conducted to investigate the stress around nails and cortical bones in subtrochanteric (ST) fractures fixed using short cephalomedullary nails (CMNs) in finite element models (FEMs) and to determine the appropriate short CMN type for different fracture levels. METHODS: The following three types of short CMNs were used: type A, which is 170 mm in length and has 1 distal locking screw; type B, 200 mm in length and 1 distal screw; and type C, 200 mm in length and 2 distal screws. A total of 24 FEMs were tested on a transverse ST fracture at 8 levels [0, 10, 20, 25, 30, 35, 40 and 50 mm below the lower margin of lesser trochanter (LT)], and were fixed using 3 different CMN types. Finite element analysis was then performed to evaluate the stress around the cortical bones and the CMNs under the assumption of anatomical reduction and fracture gap of 1 mm. RESULTS: Peak von Mises stress (PVMS) was greatest on the cortical bone around the distal screw hole and was greater than the yield strength at fracture levels ≥ 35 mm below the LT in FEMs fixed with type A and B. In contrast, FEMs fixed with type C showed PVMS less than the yield strength at all fracture levels. The PVMS within the implant was greater than the yield strength at the junction of the nail with the distal screw and distal screw itself at fracture levels ≥ 35 mm below the LT in FEMs fixed using type A. Conversely, in FEMs fixed using type B and C, all PVMSs within the implant were less than the yield strength, regardless of the fracture level. CONCLUSION: Short CMNs 170 or 200 mm in length with 1 distal screw may be used in a limited manner in high ST transverse fractures under the assumptions of anatomical reduction and fracture gap ≤ 1 mm. Meanwhile, short CMN 200 mm in length with 2 distal screws may be an available treatment option in most of ST transverse fractures regardless of the fracture level under the same set of assumptions.


Assuntos
Análise de Elementos Finitos , Fixação Intramedular de Fraturas/métodos , Fraturas do Quadril/cirurgia , Fenômenos Biomecânicos , Pinos Ortopédicos , Humanos , Imageamento Tridimensional , Teste de Materiais , Modelos Anatômicos , Estresse Mecânico
18.
Antioxidants (Basel) ; 8(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416178

RESUMO

A polyphenolic extract from melon (Cucumis melo L.), as a potential source of natural antioxidants, has been reported to have a positive effect on osteoblast activity. In this study, the protective effects of heat-treated melon extract (ECO-A) on bone strength, mineralization, and metabolism were examined in osteoporotic rat models. Osteoporosis was induced by ovariectomy (OVX) in female rats and then maintained for 8 weeks, along with the ingestion of phosphate-buffered saline (PBS, OVXP) or ECO-A (OVXE) for an additional 4 weeks. At a pre-determined timepoint, bone strengths, as well as bone mineral contents (BMC) and the density (BMD) of femurs and/or lumbar spines extracted from each animal, were measured by a mechanical test and dual-energy X-ray absorptiometry, respectively. Moreover, several biochemical markers for bone turnover were analyzed by respective colorimetric assay kits in addition to clinical analyses. The maximum load and stiffness of femurs from the OVXE group were found to be significantly higher than the other groups. Furthermore, the OVXE group showed significantly higher BMC, BMD, and bone volume than the OVX and OVXP groups, which were comparable to the non-OVX (sham) group. The levels of bone formation and resorption markers in the OVXE group were similar to the sham group, but significantly different from other groups. In conclusion, these results suggest that ECO-A can play potentially positive roles in the protection of bone loss in rats with OVX-induced osteoporosis.

19.
Materials (Basel) ; 12(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461942

RESUMO

The initial stability of a dental implant is known to be an indicator of osseointegration at immediate loading upon insertion. Implant designs have a fundamental role in the initial stability. Although new designs with advanced surface technology have been suggested for the initial stability of implant systems, verification is not simple because of various assessment factors. Our study focused on comparing the initial stability between two different implant systems via design aspects. A simulated model corresponding to the first molar derived from the mandibular bone was constructed. Biomechanical characteristics between the two models were compared by finite element analysis (FEA). Mechanical testing was also performed to derive the maximum loads for the two implant systems. CMI IS-III active (IS-III) had a more desirable stress distribution than CMI IS-II active (IS-II) in the surrounding bone region. Moreover, IS-III decreased the stress transfer to the nerve under the axial loading direction more than IS-II. Changes of implant design did not affect the maximum load. Our analyses suggest that the optimized design (IS-III), which has a bigger bone volume without loss of initial fixation, may minimize the bone damage during fixture insertion and we expect greater effectiveness in older patients.

20.
Materials (Basel) ; 12(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641962

RESUMO

Peri-implantitis is a common complication following dental implant placement, which may lead to bone loss and fixation failure. With the conventional fixture, it is difficult to perfectly clear-up the infection. To solve this, we have designed a separable fixture of which the top part is replaceable. This study aimed to compare the structural and biomechanical stability of the separable and conventional fixture. A single surgical model corresponding to the first molar in a virtual mandible model and conventional/separable implants were reproduced to compare the biomechanical characteristics of the implants using finite element analysis (FEA). The loading condition was 200N preload in the first step, and 100N (Axial), 100N (15°), and 30N (45°) in the second step. The stress distribution on the cortical bone in the separable implant was lower than the conventional implant. In particular, the Peak von Mises Stress (PVMS) values of the separable implant under lateral load was found to be about twice as low as that of the conventional implant. In this study, we suggest that the separable implant has an equivalent biomechanical stability compared to the conventional implant, is easy to retrieve in the case of peri-implantitis, and has an excellent initial stability after the surgery when used in stage 2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA