Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Materials (Basel) ; 17(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38591516

RESUMO

Electroencephalography (EEG) captures minute electrical signals emanating from the brain. These signals are vulnerable to interference from external noise and dynamic artifacts; hence, accurately recording such signals is challenging. Although dry electrodes are convenient, their signals are of limited quality; consequently, wet electrodes are predominantly used in EEG. Therefore, developing dry electrodes for accurately and stably recording EEG signals is crucial. In this study, we developed flexible dry electrodes using polydimethylsiloxane (PDMS)/carbon-nanotube (CNT) composites with isotropically wrinkled surfaces that effectively combine the advantages of wet and dry electrodes. Adjusting the PDMS crosslinker ratio led to good adhesion, resulting in a highly adhesive CNT/PDMS composite with a low Young's modulus that exhibited excellent electrical and mechanical properties owing to its ability to conformally contact skin. The isotropically wrinkled surface also effectively controls dynamic artifacts during EEG signal detection and ensures accurate signal analysis. The results of this study demonstrate that dry electrodes based on flexible CNT/PDMS composites and corrugated structures can outperform wet electrodes. The introduction of such electrodes is expected to enable the accurate analysis and monitoring of EEG signals in various scenarios, including clinical trials.

2.
Biomater Sci ; 12(6): 1536-1548, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38299265

RESUMO

Imaging-guided diagnosis and treatment of cancer hold potential to significantly improve therapeutic accuracies and efficacies. Central to this theragnostic approach has been the use of multicomponent-based multimodal nanoparticles (NPs). Apart from this conventional approach, here we propose a design strategy for the simple and straightforward formulation of NPs based on boron dipyrromethene (BODIPY) derivatives, LaB-X (X = H, Et, and Br). Specifically, the conjugation of lactose to the inherently hydrophobic BODIPY promoted the formation of LaB-X NPs in water. Furthermore, the BODIPY backbone was subjected to distyrylation, dibromination, and diethylation to tailor the optical window and the balance between fluorescence and singlet oxygen generation capabilities. We demonstrate that while the photoinduced anticancer activities of LaB-H and LaB-Et NPs were trivial, LaB-Br NPs effectively induced the apoptotic death of hepatocellular carcinoma cells under red light irradiation while allowing fluorescence cell imaging in the phototherapeutic window. This dual fluorescence photosensitizing activity of LaB-Br NPs could be switched off and on, so that both fluorescence and singlet oxygen generation were paused during NP formation in an aqueous solution, while both processes resumed after cellular uptake, likely due to NP disassembly.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Oxigênio Singlete , Fotoquimioterapia/métodos , Compostos de Boro/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Corantes , Nanopartículas/química , Fármacos Fotossensibilizantes/química
3.
Materials (Basel) ; 16(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37763613

RESUMO

Polymers mixed with conductive fillers hold significant potential for use in stretchable and wearable sensor devices. Enhancing the piezoresistive effect and mechanical stability is critical for these devices. To explore the changes in the electrical resistance under high strains, typically unachievable in single-layer composites, bi-layer structures were fabricated from carbon nanotubes (CNTs) and EcoFlex composites to see unobservable strain regions. Spherical types of non-conductive fillers composed of polystyrene and conductive filler, coated with Ni and Au on non-conductive fillers, were used as secondary fillers to improve the piezoresistive sensitivity of composites, and their respective impact on the conductive network was compared. The electrical and mechanical properties were examined in the static state to understand the impact of these secondary fillers. The changes in the electrical resistance under 100% and 300% tensile strain, and their dependence on the inherent electrical properties of the secondary fillers, were also investigated. Single-layer CNT composites proved incapable of withstanding 300% strain, whereas the bi-layer structures proved resilient. By implementing cyclic stretching tests, contrary to non-conductive fillers, reduced piezoresistive influence of the conductive secondary filler under extreme strain conditions could be observed.

4.
Plant Signal Behav ; 18(1): 2252972, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37655790

RESUMO

Potato virus Y (PVY) is an aphid-transmitted potyvirus that affects economically important solanaceous species. In this study, the phenomena and mechanisms following infection with PVY were investigated in tobacco (Nicotiana benthamiana). In tobacco plants, infection with a mild strain of PVY (PVYO) induced stunted growth in the first two leaves at the shoot apex starting 7 days post-infection (dpi), and mosaic symptoms began to appear on newly developing young leaves at 14 dpi. Using enzyme-linked immunosorbent assay and ultrastructure analysis, we confirmed that viral particles accumulated only in the upper developing leaves of infected plants. We analyzed reactive oxygen species (ROS) generation in leaves from the bottom to the top of the plants to investigate whether delayed symptom development in leaves was associated with a defense response to the virus. In addition, the ultrastructural analysis confirmed the increase of ATG4 and ATG8, which are autophagy markers by endoplasmic reticulum (ER) stress, and the expression of genes involved in viral RNA suppression. Overall, our results suggested that viral RNA silencing and induced autophagy may play a role in the inhibition of viral symptom development in host plants in response to PVYO infection.


Assuntos
Afídeos , Potyvirus , Animais , Nicotiana/genética , Autofagia , Estresse do Retículo Endoplasmático
5.
Membranes (Basel) ; 13(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37623792

RESUMO

An extreme ultraviolet (EUV) pellicle is an ultrathin membrane at a stand-off distance from the reticle surface that protects the EUV mask from contamination during the exposure process. EUV pellicles must exhibit high EUV transmittance, low EUV reflectivity, and superior thermomechanical durability that can withstand the gradually increasing EUV source power. This study proposes an optimal range of optical constants to satisfy the EUV pellicle requirements based on the optical simulation results. Based on this, zirconium disilicide (ZrSi2), which is expected to satisfy the optical and thermomechanical requirements, was selected as the EUV pellicle candidate material. An EUV pellicle composite comprising a ZrSi2 thin film deposited via co-sputtering was fabricated, and its thermal, optical, and mechanical properties were evaluated. The emissivity increased with an increase in the thickness of the ZrSi2 thin film. The measured EUV transmittance (92.7%) and reflectivity (0.033%) of the fabricated pellicle satisfied the EUV pellicle requirements. The ultimate tensile strength of the pellicle was 3.5 GPa. Thus, the applicability of the ZrSi2 thin film as an EUV pellicle material was verified.

6.
Bioeng Transl Med ; 7(3): e10321, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176596

RESUMO

In the musculoskeletal system, the myotendinous junction (MTJ) is optimally designed from the aspect of force transmission generated from a muscle through a tendon onto the bone to induce movement. Although the MTJ is a key complex tissue in force transmission, the realistic fabrication, and formation of complex tissues can be limited. To obtain the MTJ construct, we prepared two bioinks, muscle- and tendon-derived decellularized extracellular matrix (dECM), which can induce myogenic and tenogenic differentiation of human adipose-derived stem cells (hASCs). By using a modified bioprinting process supplemented with a nozzle consisting of a single-core channel and double-sheath channels, we can achieve three different types of MTJ units, composed of muscle, tendon, and interface zones. Our results indicated that the bioprinted dECM-based constructs induced hASCs to myogenic and tenogenic differentiation. In addition, a significantly higher MTJ-associated gene expression was detected at the MTJ interface with a cell-mixing zone than in the other interface models. Based on the results, the bioprinted MTJ model can be a potential platform for understanding the interaction between muscle and tendon cells, and even the bioprinting method can be extensively applied to obtain complex tissues.

7.
Cancers (Basel) ; 14(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35884416

RESUMO

HCC is well known for low glycolysis in the tumors, whereas hypoxia induces glycolytic phenotype and tumor progression. This study was conducted to evaluate the expression of SLCs in human HCCs and investigated whether extracellular nutrient administration related to SLCs in low-glycolytic HCC can prevent hypoxic tumor progression. SLCs expression was screened according to the level of glycolysis in HCCs. Then, whether extracellular nutrient treatment can affect hypoxic tumor progression, as well as the mechanisms, were evaluated in an in vitro cell line and an in vivo animal model. Low-glycolytic HCCs showed high SLC13A5/NaCT and SLC16A1/MCT1 but low SLC2A1/GLUT1 and HIF1α/HIF1α expression. Especially, high SLC13A5 expression was significantly associated with good overall survival in the Cancer Genome Atlas (TCGA) database. In HepG2 cells with the highest NaCT expression, extracellular citrate treatment upon hypoxia induced HIF1α degradation, which led to reduced glycolysis and cellular proliferation. Finally, in HepG2-animal models, the citrate-treated group showed smaller tumor with less hypoxic areas than the vehicle-treated group. In patients with HCC, SLC13A5/NaCT is an important SLC, which is associated with low glycolysis and good prognosis. Extracellular citrate treatment induced the failure of metabolic adaptation to hypoxia and tumor growth inhibition, which can be a potential therapeutic strategy in HCCs.

8.
J Exerc Rehabil ; 17(3): 175-183, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34285895

RESUMO

The purpose of this study is to investigate the effect of ankle injury preventative C-tape on the ankle range of motion, Y-balance test (YBT), and functional movement screening (FMS) test in Judo athletes. Participants in this study were 15 male judo athletes in high school. The angle of the ankle joint, YBT, and FMS were examined with and without the application of C-tape on each athlete's dominant foot. In YBT, ankle range of motion, and anterior reach distance were significantly lower in the taped ankle compared to the other (P<0.01). Moreover, the overhead deep squat and the FMS total score were significantly decreased after the C-tape application (P<0.05). The taping's limitation on the ankle joint range of motion may impose adverse effects on the other relevant joints, therefore a proper guideline on long-term usage is advised.

9.
Plants (Basel) ; 10(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067279

RESUMO

Gastric cancer is a malignant tumor with a high incidence and mortality rate worldwide. Nevertheless, anticancer drugs that can be used for gastric cancer treatment are limited. Therefore, it is important to develop targeted anticancer drugs for the treatment of gastric cancer. Dehydroabietic acid (DAA) is a diterpene found in tree pine. Previous studies have demonstrated that DAA inhibits gastric cancer cell proliferation by inducing apoptosis. However, we did not know how DAA inhibits the proliferation of gastric cancer cells through apoptosis. In this study, we attempted to identify the genes that induce cell cycle arrest and cell death, as well as those which are altered by DAA treatment. DAA-regulated genes were screened using RNA-Seq and differentially expressed genes (DEGs) analysis in AGS cells. RNA-Seq analysis revealed that the expression of survivin, an apoptosis inhibitor, was significantly reduced by DAA treatment. We also confirmed that DAA decreased survivin expression by RT-PCR and Western blotting analysis. In addition, the ability of DAA to inhibit survivin was compared to that of YM-155, a known survivin inhibitor. DAA was found to have a stronger inhibitory effect in comparison with YM-155. DAA also caused an increase in cleaved caspase-3, an apoptosis-activating protein. In conclusion, DAA is a potential anticancer agent for gastric cancer that inhibits survivin expression.

10.
Polymers (Basel) ; 13(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799974

RESUMO

Skin aging is caused by exposure to various external factors. Ultraviolet B (UVB) irradiation induces oxidative stress, photoaging, and inflammation in skin cells. Pinus densiflora Sieb. et Zucc. (red pine) has various antimicrobial and antioxidant activities. However, the anti-inflammatory effects of red pine on skin have rarely been reported. The protective effects of malonic acid (MA) isolated from Pinus densiflora were investigated against UVB-induced damage in an immortalized human keratinocyte cell line (HaCaT). MA increased levels of the antioxidant enzymes superoxide dismutase 1 (SOD-1) and heme oxygenase 1 (HO-1) via activation of nuclear factor-erythroid 2-related factor-2 (Nrf2), resulting in a reduction in UVB-induced reactive oxygen species (ROS) levels. Additionally, the inhibition of ROS increased HaCaT cell survival rate. Thus, MA downregulated the expression of ROS-induced nuclear factor-κB, as well as inflammation-related cytokines (interleukin-6, cyclooxygenase-2, and tumor necrosis factor-α). Furthermore, MA significantly suppressed the mitogen-activated protein kinase/activator protein 1 signaling pathway and reduced the expression of matrix metalloproteinases (MMPs; MMP-1, MMP-3, and MMP-9). In contrast, MA treatment increased the expression of collagen synthesis regulatory genes (COL1A1 and COL3A1) via regulation of Smad2/3 signal induction through transforming growth factor-ß. In conclusion, MA protected against UVB-induced photoaging via suppression of skin inflammation and induction of collagen biosynthesis.

11.
Int J Mol Sci ; 22(2)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435161

RESUMO

Gastric cancer is the fifth most common cancer worldwide with a poor survival rate. Therefore, it is important to identify predictive and prognostic biomarkers of gastric cancer. Laminin subunit beta 1 (LAMB1) is involved in attachment, migration, and organization during development, and its elevated expression has been associated with several cancers. However, the role and mechanism of LAMB1 in gastric cancer remains unknown. Here, we determined that LAMB1 is upregulated in gastric cancer tissues and contributes to cell growth and motility. Using a public database, we showed that LAMB1 expression was significantly upregulated in gastric cancer compared to normal tissues. LAMB1 was also found to be associated with poor prognosis in patients with gastric cancer. Overexpression of LAMB1 elevated cell proliferation, invasion, and migration; however, knockdown of LAMB1 decreased these effects in gastric cancer cells. U0126, an extracellular signal-regulated kinase (ERK) inhibitor, regulated the expression of LAMB1 in gastric cancer cells. Additionally, we showed that c-Jun directly binds to the LAMB1 promoter as a transcription factor and regulates its gene expression via the ERK pathway in gastric cancer cells. Therefore, our study indicates that LAMB1 promotes cell growth and motility via the ERK/c-Jun axis and is a potential biomarker and therapeutic target of gastric cancer.


Assuntos
Adenocarcinoma/genética , Movimento Celular , Proliferação de Células , Laminina/genética , Neoplasias Gástricas/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/fisiopatologia , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Laminina/metabolismo , Laminina/fisiologia , Sistema de Sinalização das MAP Quinases , Prognóstico , Proteínas Proto-Oncogênicas c-jun/metabolismo , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/fisiopatologia
12.
J Med Food ; 24(1): 50-58, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33449861

RESUMO

Korean red pine needle (RPN) exhibits various biological and pharmacological activities. Among the various compounds of RPN, we isolated dehydroabietic and 4-epi-trans-communic acid. At first, we confirmed that two compounds inhibited angiotensin converting enzyme (ACE) and induced p-Akt in human umbilical vein endothelial cells (HUVEC). RPN extract powder significantly reduced systolic blood pressure in spontaneous hypertensive rats (SHRs) through the reduced expression of ACE and angiotensin type I receptors in the lungs of SHRs. The Lineweaver-Burk plots suggested that the two compounds were noncompetitive inhibitors of ACE. Using docking analysis, we found that two compounds showed the best returned pose at ACE active sites, and formed hydrogen and hydrophobic bonds with ACE residues. These results demonstrate that RPNs may be a source of compounds effective for preventing hypertension and may be useful in the development of antihypertensive drugs.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Diterpenos/uso terapêutico , Hipertensão/tratamento farmacológico , Pinus/química , Preparações de Plantas/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/genética , Compostos Fitoquímicos/farmacologia , Ratos , Ratos Endogâmicos SHR
13.
ACS Appl Mater Interfaces ; 12(44): 49386-49397, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-32948093

RESUMO

This study examined whether neonatal chicken bone marrow cells (cBMCs) could support the osteogenesis of human stromal cells in a three-dimensional (3D) extracellular bioprinting niche. The majority (>95%) of 4-day-old cBMCs subcultured 5 times were positive for osteochondrogenesis-related genes (Col I, Col II, Col X, aggrecan, Sox9, osterix, Bmp2, osteocalcin, Runx2, and osteopontin) and their related proteins (Sox9, collagen type I, and collagen type II). LC-MS/MS analysis demonstrated that cBMC-conditioned medium (c-medium) contained proteins related to bone regeneration, such as periostin and members of the TGF-ß family. Next, a significant increase in osteogenesis was detected in three human adipose tissue-derived stromal cell (hASC) lines, after exposure to c-medium concentrates in 2D culture (p < 0.05). To evaluate biological function in a 3D environment, we employed the cBMC-derived bioactive components as a cell-supporting biomaterial in collagen bioink, which was printed to construct a 3D hASC-laden scaffold for observing osteogenesis. Complete osteogenesis was detected in vitro. Moreover, after transplantation of the hASC-laden structure into rats, prominent bone formation was observed compared with that in control rats receiving scaffold-free hASC transplantation. These results demonstrated that substance(s) secreted by chick bone marrow cells clearly activated the osteogenesis of hASCs in 2D- or 3D-niches.


Assuntos
Bioimpressão , Células da Medula Óssea/citologia , Tinta , Impressão Tridimensional , Células Estromais/citologia , Animais , Células Cultivadas , Embrião de Galinha , Galinhas , Humanos , Estrutura Molecular , Osteogênese , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
14.
Cancers (Basel) ; 12(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492954

RESUMO

Spondin-2 (SPON2) is involved in cancer progression and metastasis of many tumors; however, its role and underlying mechanism in gastric cancer are still obscure. In this study, we investigated the role of SPON2 and related signaling pathway in gastric cancer progression and metastasis. SPON2 expression levels were found to be upregulated in gastric cancer cell lines and patient tissues compared to normal gastric epithelial cells and normal controls. Furthermore, SPON2 silencing was observed to decrease cell proliferation and motility and reduce tumor growth in xenograft mice. Conversely, SPON2 overexpression was found to increase cell proliferation and motility. Subsequently, we focused on regulatory mechanism of SPON2 in gastric cancer. cDNA microarray and in vitro study showed that Notch signaling is significantly correlated to SPON2 expression. Therefore, we confirmed how Notch signaling pathway regulate SPON2 expression using Notch signaling-related transcription factor interaction and reporter gene assay. Additionally, activation of Notch signaling was observed to increase cell proliferation, migration, and invasion through SPON2 expression. Our study demonstrated that Notch signaling-mediated SPON2 upregulation is associated with aggressive progression of gastric cancer. In conclusion, we suggest upregulated SPON2 via Notch signaling as a potential target gene to inhibit gastric cancer progression.

15.
Biosens Bioelectron ; 163: 112301, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568699

RESUMO

Here we report a novel method of microRNA (miRNA) profiling with particle-based multiplex quantitative reverse transcription polymerase chain reaction (RT-qPCR). To achieve target-specific reaction in a particle, the stem-loop RT primer and forward primer for each target miRNA were chemically immobilized to the particle. Target-specific cDNA synthesis proceeds with the stem-loop RT primer and then qPCR subsequently proceeds with the forward primer to rapidly achieve a quantitative result. High-fidelity multiplex assay was also accomplished in a single PCR process by loading multiple particles for each specific miRNA. The method for primer supply in the particles, involving confinement of the target-specific RT and PCR primers in the matrix of particles, led to the reduction of nonspecific reactions and improved the selectivity of the miRNA assay while minimizing labor in a multiple target assay. Specifically, this particle-based assay enabled the differentiation of mature miRNA from precursor with selectivity of 270:1 in terms of amplification speed. This advanced method also showed good discrimination among highly homologous let-7 family members, with cross-reaction rates of less than 5%. We demonstrated a very simple process of five-plex miRNA profiling in total RNA, and the measured changes in expression level were consistent with those from a conventional singleplex method.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Primers do DNA , MicroRNAs/genética , Reação em Cadeia da Polimerase Multiplex , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Anim Cells Syst (Seoul) ; 24(1): 26-33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158613

RESUMO

Geranium thunbergii is a traditional East Asian medicine for stomach diseases including dysentery and stomach ulcers in East Asia and has been reported to possess biological activity. The benefits of G. thunbergii in gastric cancer are unknown. In this study, we demonstrate that G. thunbergii extract suppresses proliferation and induces death and G1/S cell cycle arrest of gastric cancer cells. Proliferation was significantly inhibited in a time- and dose-dependent manner. Cell cycle arrest was associated with significant decreases in CDK4/cyclinD1 complex and CDK2/cyclinE complex genes expression. In addition, the protein expression of caspase-3 was decreased and that of activated poly (ADP-ribose) polymerase (PARP) was increased, which indicated apoptosis. The expressions of the Bax and Bcl-2, which are apoptosis related proteins, were upregulated and down-regulated, respectively. The results indicate that G. thunbergii extract can inhibit proliferation and induce both G/S cell cycle arrest and apoptosis of gastric cancer cells. Also, the induction of apoptosis involved the intrinsic pathways of the cells. Take the results, we suggest that G. thunbergii extract has anti-gastric cancer activity and may be a potential therapeutic candidate for gastric cancer.

17.
Mol Cancer Res ; 18(3): 403-413, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31822520

RESUMO

The hyaluronan-mediated motility receptor (HMMR) is overexpressed in gastric cancer; however, the apparent role of HMMR has not been well defined owing to lack of detailed studies on gastric tumorigenesis. Therefore, we elucidated the functional and regulatory mechanisms of HMMR in gastric cancer. Using publicly available data, we confirmed HMMR overexpression in patients with gastric cancer. HMMR silencing decreased proliferation, migration, and invasion of gastric cancer cells, whereas HMMR overexpression reversed these effects. A gastric cancer xenograft mouse model showed statistically significant inhibition of tumor growth upon HMMR depletion. Previous data from cDNA microarray showed reduced HMMR expression upon inhibition of galectin-3. However, overexpression of galectin-3 increased HMMR expression, cell proliferation, and motility in gastric cancer cells, whereas HMMR silencing blocked these effects. Interestingly, galectin-3 interacted directly with C/EBPß and bound to HMMR promoter to drive its transcription, and gastric cancer cell proliferation and motility. Altogether, high expression of HMMR promoted gastric cancer cell proliferation and motility and could be a prognostic factor in gastric cancer. In addition, HMMR expression was regulated by the interaction between C/EBPß and galectin-3. Therefore, targeting HMMR along with galectin-3 and C/EBPß complex could be a potential treatment strategy for inhibiting gastric cancer progression and metastasis. IMPLICATIONS: This study provides evidence that galectin-3 interacts with C/EBPß in gastric cancer, and galectin-3 and C/EBPß complex promotes gastric cancer cell progression and motility through upregulating HMMR expression.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/efeitos dos fármacos , Galectina 3/metabolismo , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Proteínas da Matriz Extracelular , Humanos , Receptores de Hialuronatos , Camundongos , Neoplasias Gástricas/patologia , Transfecção , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Harmful Algae ; 86: 37-45, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31358275

RESUMO

The ichthyotoxic Cochlodinium polykrikoides is one of the most harmful bloom-forming dinoflagellates. In the present study, the economically important red seabream Pagrus major was exposed to sublethal concentrations of C. polykrikoides (i.e., 1,000 and 3,000 cells mL-1) for 24 h, and the antioxidant defense system and DNA damage dose-specific responses were analyzed during the exposure and additional depuration period (2 h) in the gill tissue. No significant ichthyotoxicity was observed under different light and dark conditions, while significantly lower levels of opercular respiratory rate were measured in the C. polykrikoides-exposed red seabream. Intracellular malondialdehyde (MDA) content increased significantly in the 3,000 cells-exposed gill tissues at 24 h and the increased level was maintained during depuration. Intracellular glutathione (GSH) levels were significantly depleted following exposure to 3,000 cells mL-1 of C. polykrikoides, but the levels increased significantly in the depuration phase. Overall, significantly higher activity of antioxidant defense system enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and glutathione peroxidase (GPx) were observed in the 3,000 cells mL-1-exposed gill tissues at 24 h and during depuration. Analysis of the two reliable DNA damage parameters, Olive tail moment and percent tail DNA, showed significantly elevated levels of DNA damage in the 1,000 and 3,000 cells mL-1-exposed gill tissue. Increases in the activity of the antioxidant defense system and DNA damage may be one of the major mechanisms mediating C. polykrikoides-induced devastation in aquaculture and fisheries.


Assuntos
Dinoflagellida , Dourada , Animais , Dano ao DNA , Brânquias , Proliferação Nociva de Algas , Estresse Oxidativo
19.
World Neurosurg ; 123: 418-424.e3, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30508597

RESUMO

OBJECTIVE: Clazosentan, an endothelin receptor antagonist, reduced vasospasm and delayed ischemic neurologic deficit (DIND) but did not improve outcome after subarachnoid hemorrhage (SAH) in clinical trials. However, a lack of dose-dependent analysis and potential overestimation of clazosentan's effect are concerning. We used stratified analysis and trial sequential analysis (TSA) of existing data to investigate the effects of clazosentan on SAH outcome. METHODS: Studies from PubMed, Embase, and Cochrane were reviewed for eligibility. Primary outcomes were DIND requiring rescue therapy, all-cause mortality, and vasospasm-related morbidity at 6 weeks. Secondary outcomes were moderate-to-severe angiographic vasospasm, new cerebral infarction, and poor clinical outcome at 3 months. TSA was performed to assess the required information size and the α-spending monitoring boundary effect of relative risk (RR) reduction. A stratified analysis of clazosentan dosage was performed. RESULTS: Five studies (N = 2317) were included. Clazosentan significantly reduced the risk of DIND requiring rescue therapy (RR, 0.625; 95% confidence interval [CI], 0.462-0.846) and vasospasm (RR, 0.543; 95% CI, 0.464-0.635), but did not significantly affect mortality or vasospasm-related morbidity (RR, 0.775; 95% CI, 0.578-1.039), new cerebral infarction (RR, 0.604; 95% CI, 0.383-0.952), or outcome (RR, 1.131; 95% CI, 0.959-1.334). TSA revealed that the studies were underpowered to evaluate the effects of clazosentan on mortality and vasospasm-associated morbidity. We found 10-15 mg/h of clazosentan administration was associated with lower rates of vasospasm and new cerebral infarctions compared with 5 mg/h. CONCLUSIONS: Clazosentan reduced the risk of DIND requiring rescue therapy and moderate-to-severe vasospasm. Further meta-analyses based on individual patient data with different clazosentan doses and more refined outcome measures are necessary to clarify clazosentan's efficacy in improving post-SAH outcome.


Assuntos
Dioxanos/uso terapêutico , Antagonistas dos Receptores de Endotelina/uso terapêutico , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Hemorragia Subaracnóidea/tratamento farmacológico , Sulfonamidas/uso terapêutico , Tetrazóis/uso terapêutico , Bases de Dados Bibliográficas/estatística & dados numéricos , Humanos , Resultado do Tratamento
20.
Biochem Biophys Res Commun ; 506(3): 641-647, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30454700

RESUMO

Cancer/Testis antigen DDX53 shows high expression level in various tumors and is involved in anti-cancer drug resistance. However, the functional study of DDX53 in cervix cancer remains unknown. In this study, the role of DDX53 in taxol-resistance of cervix cancer cells was investigated. In taxol-resistant HelaTR cells, DDX53 was significantly increased as compared to the parental HeLa cells. HelaTR cells also showed upregulation of multidrug resistant gene MDR1, invasive characteristics and decreased apoptosis. In addition, increased autophagy level was observed in HelaTR cells. Overexpression of DDX53 in HeLa and SiHa markedly led to greater resistance to taxol and cisplatin, whereas knockdown of DDX53 in HelaTR cells restored sensitivity, demonstrating that DDX53 regulated taxol resistance in cervix cancer cells. DDX53 overexpression in HeLa and SiHa cells enhanced invasion, migration and anchorage independent growth, DDX53 knockdown showed inverse effects in HeLaTR cells. When DDX53 expression was suppressed by siRNA, autophagic flux and drug resistance of HelaTR cells were decreased. In addition, DDX53 was upregulated in cervix cancer tissues from patient with a glassy cell carcinoma of cervix. Taken together, these results suggest that DDX53 plays a critical role in taxol-resistance by activating autophagy and a potential therapeutic target for the treatment of taxol-resistant cervix cancer.


Assuntos
RNA Helicases DEAD-box/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Paclitaxel/farmacologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Autofagia/efeitos dos fármacos , Autofagia/genética , RNA Helicases DEAD-box/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Neoplasias do Colo do Útero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA