Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 302, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968723

RESUMO

BACKGROUND: Understanding the mechanism behind immune cell plasticity in cancer metastasis is crucial for identifying key regulators. Previously we found that mitotic factors regulate epithelial-mesenchymal transition, but how these factors convert to metastatic players in the tumor microenvironment (TME) is not fully understood. METHODS: The clinical importance of mitotic factors was analyzed by heatmap analysis, a KM plot, and immunohistochemistry in lung adenocarcinoma (LUAD) patients. Immunoprecipitation, LC-MS/MS, kinase assay, and site-directed mutagenesis were performed for the interaction and phosphorylation. A tail-vein injection mouse model, Transwell-based 3D culture, microarray analysis, coculture with monocytes, and chromatin immunoprecipitation assays were used to elucidate the function of phosphorylated FoxM1 in metastasis of TME. RESULTS: The phosphorylated FoxM1 at Ser25 by PLK1 acquires the reprogramming ability to stimulate the invasive traits in cancer and influence immune cell plasticity. This invasive form of p-FoxM1 upregulates the expression of IL1A/1B, VEGFA, and IL6 by direct activation, recruiting monocytes and promoting the polarization of M2d-like tumor-associated macrophages (TAMs). Upregulation of PD-L1 in LUAD having phosphomimetic FoxM1 facilitates immune evasion. In invasive LUAD with phosphomimetic FoxM1, IFITM1 is the most highly expressed through the activation of the STING-TBK1-IRF3 signaling, which enhances FoxM1-mediated signaling. Clinically, higher expression of FOXM1, PLK1, and IFITM1 is inversely correlated with the survival rate of advanced LUAD patients, providing a promising therapeutic strategy for the treatment of LUAD. CONCLUSION: FoxM1-based therapy would be a potential therapeutic strategy for LUAD to reduce TAM polarization, immune escape, and metastasis, since FoxM1 functions as a genetic reprogramming factor reinforcing LUAD malignancy in the TME.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Fatores de Transcrição Forkhead/metabolismo , Proteína Forkhead Box M1/genética , Macrófagos Associados a Tumor/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Adenocarcinoma/patologia , Neoplasias Pulmonares/genética , Microambiente Tumoral
2.
Theranostics ; 13(3): 1198-1216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793862

RESUMO

Rationale: ß-catenin is a component for cell adhesion and a transcriptional coactivator in epithelial-mesenchymal transition (EMT). Previously we found that catalytically active PLK1 drives EMT in non-small cell lung cancer (NSCLC), upregulating extracellular matrix factors including TSG6, laminin γ2, and CD44. To understand the underlying mechanism and clinical significance of PLK1 and ß-catenin in NSCLC, their relationship and function in metastatic regulation were investigated. Methods: The clinical relevance between the survival rate of NSCLC patients and the expression of PLK1 and ß-catenin was analyzed by a KM plot. Immunoprecipitation, kinase assay, LC-MS/MS spectrometry, and site-directed mutagenesis were performed to reveal their interaction and phosphorylation. A lentiviral doxycycline-inducible system, Transwell-based 3D culture, tail-vein injection model, confocal microscopy, and chromatin immunoprecipitation assays were used to elucidate the function of phosphorylated ß-catenin in the EMT of NSCLC. Results: Clinical analysis revealed that the high expression of CTNNB1/PLK1 was inversely correlated with the survival rates of 1,292 NSCLC patients, especially in metastatic NSCLC. In TGF-ß-induced or active PLK1-driven EMT, ß-catenin, PLK1, TSG6, laminin γ2, and CD44 were concurrently upregulated. ß-catenin is a binding partner of PLK1 in TGF-ß-induced EMT and is phosphorylated at S311. Phosphomimetic ß-catenin promotes cell motility, invasiveness of NSCLC cells, and metastasis in a tail-vein injection mouse model. Its upregulated stability by phosphorylation enhances transcriptional activity through nuclear translocation for the expression of laminin γ2, CD44, and c-Jun, therefore enhancing PLK1 expression by AP-1. Conclusions: Our findings provide evidence for the critical role of the PLK1/ß-catenin/AP-1 axis in metastatic NSCLC, implying that ß-catenin and PLK1 may serve as a molecular target and prognostic indicator of the therapeutic response in metastatic NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinases , beta Catenina , Animais , Camundongos , beta Catenina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Matriz Extracelular/metabolismo , Laminina/metabolismo , Neoplasias Pulmonares/patologia , Fosforilação , Espectrometria de Massas em Tandem , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Quinase 1 Polo-Like
3.
Exp Mol Med ; 54(4): 414-425, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379935

RESUMO

Accumulating evidence indicates that mitotic protein kinases are involved in metastatic migration as well as tumorigenesis. Protein kinases and cytoskeletal proteins play a role in the efficient release of metastatic cells from a tumor mass in the tumor microenvironment, in addition to playing roles in mitosis. Mitotic protein kinases, including Polo-like kinase 1 (PLK1) and Aurora kinases, have been shown to be involved in metastasis in addition to cell proliferation and tumorigenesis, depending on the phosphorylation status and cellular context. Although the genetic programs underlying mitosis and metastasis are different, the same protein kinases and cytoskeletal proteins can participate in both mitosis and cell migration/invasion, resulting in migratory tumors. Cytoskeletal remodeling supports several cellular events, including cell division, movement, and migration. Thus, understanding the contributions of cytoskeletal proteins to the processes of cell division and metastatic motility is crucial for developing efficient therapeutic tools to treat cancer metastases. Here, we identify mitotic kinases that function in cancer metastasis as well as tumorigenesis. Several mitotic kinases, namely, PLK1, Aurora kinases, Rho-associated protein kinase 1, and integrin-linked kinase, are considered in this review, as an understanding of the shared machineries between mitosis and metastasis could be helpful for developing new strategies to treat cancer.


Assuntos
Neoplasias , Proteínas Quinases , Aurora Quinases/genética , Aurora Quinases/metabolismo , Carcinogênese , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/metabolismo , Células HeLa , Humanos , Mitose , Fosforilação , Proteínas Quinases/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA