Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 793: 148401, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166903

RESUMO

We evaluated the potential impacts of atmospheric deposition on marine productivity and inorganic carbon chemistry in the northwestern Pacific Ocean (8-39°N, 125-157°E). The nutrient concentration in atmospheric total suspended particles decreased exponentially with increasing distance from the closest land-mass (Asia), clearly revealing anthropogenic and terrestrial contributions. The predicted mean depositional fluxes of inorganic nitrogen were approximately 34 and 15 µmol m-2 d-1 to the west and east of 140°E, respectively, which were at least two orders of magnitude greater than the inorganic phosphorus flux. On average, atmospheric particulate deposition would support 3-4% of the net primary production along the surveyed tracks, which is equivalent to ~2% of the dissolved carbon increment caused by the penetration of anthropogenic CO2. Our observations generally fell within the ranges observed over the past 18 years, despite an increasing trend of atmospheric pollution in the source regions during the same period, which implies high temporal and spatial variabilities of atmospheric nutrient concentration in the study area. Continued atmospheric anthropogenic nitrogen deposition may alter the relative abundances of nitrogen and phosphorus.


Assuntos
Nitrogênio , Fósforo , Carbono , Nitrogênio/análise , Nutrientes , Oceano Pacífico , Fósforo/análise
2.
Sci Total Environ ; 681: 400-412, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31108360

RESUMO

The atmospheric deposition of anthropogenic nitrogen is an increasingly important new source of nitrogen to the ocean. Coastal areas east of the Korean Peninsula are suitable for the investigation of the effects of atmospheric anthropogenic nitrogen on the ocean nutrient system because of the low riverine discharge rates and the prevailing influence of the East Asian outflow. Thus, we measured the concentrations of nitrate (NO3-) and ammonium (NH4+) in airborne particles and in precipitation from March 2014 to February 2016 at a coastal site (37.08°N, 129.41°E) on the east coast of Korea. The dry deposition of NO3- (27-30 mmol N m-2 yr-1) was far greater than that of NH4+ (6-8 mmol N m-2 yr-1). The greater rate of dry NO3- deposition was associated with air masses traveling over northeastern China and central Korea. In contrast, the rates of wet deposition of NO3- (17-24 mmol N m-2 yr-1) and NH4+ (14-27 mmol N m-2 yr-1) were comparable and were probably associated with in-cloud scavenging of these ions. The results indicate that the total deposition of NO3- and NH4+ combined could contribute to ~2.4% and ~1.9% of the primary production in the coastal areas east of the Korean Peninsula and in the East Asian marginal seas, respectively, which would be a lower bound because the dry deposition of reactive nitrogen gas was not included. Our study shows that the atmospheric input of anthropogenic NO3- and NH4+ may substantially increase phytoplankton biomass in the coastal waters of the East Sea near the Korean Peninsula.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA