Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Nano ; 18(22): 14244-14254, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38758709

RESUMO

Metal nanoclusters (NCs) are a special class of nanoparticles composed of a precise number of metal atoms and ligands. Because the proportion of ligands to metal atoms is high in metal NCs, the ligand type determines the physical properties of metal NCs. Furthermore, ligands presumably govern the entire formation process of the metal NCs. However, their roles in the synthesis, especially as factors in the uniformity of metal NCs, are not understood. It is because the synthetic procedure of metal NCs is highly convoluted. The synthesis is initiated by the formation of various metal-ligand complexes, which have different numbers of atoms and ligands, resulting in different coordinations of metal. Moreover, these complexes, as actual precursors to metal NCs, undergo sequential transformations into a series of intermediate NCs before the formation of the desired NCs. Thus, to resolve the complicated synthesis of metal NCs and achieve their uniformity, it is important to investigate the reactivity of the complexes. Herein, we utilize a combination of mass spectrometry, density functional theory, and electrochemical measurements to understand the ligand effects on the reactivity of AuI-thiolate complexes toward the reductive formation of Au NCs. We discover that the stability of the complexes can be increased by either van der Waals interactions induced by the long carbon chain of ligands or by non-thiol functional groups in the ligands, which additionally coordinate with AuI in the complexes. Such structural effects of thiol ligands determine the reduction reactivity of the complexes and the amount of NaBH4 required for the controlled synthesis of the Au NCs.

2.
Nat Commun ; 14(1): 3201, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268615

RESUMO

Metal nanoclusters (NCs), an important class of nanoparticles (NPs), are extremely small in size and possess quasi-molecular properties. Due to accurate stoichiometry of constituent atoms and ligands, NCs have strong structure-property relationship. The synthesis of NCs is seemingly similar to that of NPs as both are formed by colloidal phase transitions. However, they are considerably different because of metal-ligand complexes in NC synthesis. Reactive ligands can convert metal salts to complexes, actual precursors to metal NCs. During the complex formation, various metal species occur, having different reactivity and fraction depending on synthetic conditions. It can alter their degree of participation in NC synthesis and the homogeneity of final products. Herein, we investigate the effects of complex formation on the entire NC synthesis. By controlling the fraction of various Au species showing different reactivity, we find that the extent of complex formation alters reduction kinetics and the uniformity of Au NCs. We demonstrate that this concept can be universally applied to synthesize Ag, Pt, Pd, and Rh NCs.

3.
Adv Mater ; 35(4): e2203364, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35853218

RESUMO

Ruthenium is one of the most active catalysts for ammonia dehydrogenation and is essential for the use of ammonia as a hydrogen storage material. The B5 -type site on the surface of ruthenium is expected to exhibit the highest catalytic activity for ammonia dehydrogenation, but the number of these sites is typically low. Here, a B5 -site-rich ruthenium catalyst is synthesized by exploiting the crystal symmetry of a hexagonal boron nitride support. In the prepared ruthenium catalyst, ruthenium nanoparticles are formed epitaxially on hexagonal boron nitride sheets with hexagonal planar morphologies, in which the B5 sites predominate along the nanoparticle edges. By activating the catalyst under the reaction condition, the population of B5 sites further increases as the facets of the ruthenium nanoparticles develop. The electron density of the Ru nanoparticles also increases during catalyst activation. The synthesized catalyst shows superior catalytic activity for ammonia dehydrogenation compared to previously reported catalysts. This work demonstrates that morphology control of a catalyst via support-driven heteroepitaxy can be exploited for synthesizing highly active heterogeneous catalysts with tailored atomic structures.

4.
Adv Mater ; 34(45): e2206066, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36120806

RESUMO

Unit-cell-thick MoS2 is a promising electrocatalyst for the hydrogen evolution reaction (HER) owing to its tunable catalytic activity, which is determined based on the energetics and molecular interactions of different types of HER active sites. Kinetic responses of MoS2 active sites, including the reaction onset, diffusion of the electrolyte and H2 bubbles, and continuation of these processes, are important factors affecting the catalytic activity of MoS2 . Investigating these factors requires a direct real-time analysis of the HER occurring on spatially independent active sites. Herein, the H2 evolution and electrolyte diffusion on the surface of MoS2 are observed in real time by in situ electrochemical liquid-phase transmission electron microscopy (LPTEM). Time-dependent LPTEM observations reveal that different types of active sites are sequentially activated under the same conditions. Furthermore, the electrolyte flow to these sites is influenced by the reduction potential and site geometry, which affects the bubble detachment and overall HER activity of MoS2 .

5.
ChemSusChem ; 15(10): e202200375, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35293137

RESUMO

Efficient catalytic ring-opening coupled with hydrogenation is a promising but challenging reaction for producing adipic acid (AA) from 2,5-furan dicarboxylic acid (FDCA). In this study, AA synthesis is carried out in two steps from FDCA via tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) over a recyclable Ru/Al2 O3 and an ionic liquid, [MIM(CH2 )4 SO3 H]I (MIM=methylimidazolium) to deliver 99 % overall yield of AA. Ru/Al2 O3 is found to be an efficient catalyst for hydrogenation and hydrogenolysis of FDCA to deliver THFDCA and 2-hydroxyadipic acid (HAA), respectively, where ruthenium is more economically viable than well-known palladium or rhodium hydrogenation catalysts. H2 chemisorption shows that the alumina phase strongly affects the interaction between Ru nanoparticles (NPs) and supports, resulting in materials with high dispersion and small size of Ru NPs, which in turn are responsible for the high conversion of FDCA. An ionic liquid system, [MIM(CH2 )4 SO3 H]I is applied to the hydrogenolysis of THFDCA for AA production. The [MIM(CH2 )4 SO3 H]I exhibits superior activity, enables simple product isolation with high purity, and reduces the severe corrosion problems caused by the conventional hydroiodic acid catalytic system.


Assuntos
Líquidos Iônicos , Adipatos , Biomassa , Catálise , Ácidos Dicarboxílicos , Furanos
6.
Angew Chem Int Ed Engl ; 60(48): 25411-25418, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34523792

RESUMO

Single-phase formation of active metal oxides on supports has been vigorously pursued in many catalytic applications to suppress undesired reactions and to determine direct structure-property relationships. However, this is difficult to achieve in nanoscale range because the effect of non-uniform metal-support interfaces becomes dominant in the overall catalyst growth, leading to the nucleation of various metastable oxides. Herein, we develop a supported single-phase corundum-Rh2 O3 (I) nanocatalyst by utilizing controlled interaction between metal oxide and h-BN support. Atomic-resolution electron microscopy and first-principle calculation reveal that single-phase formation occurs via uniform and preferential attachment of Rh2 O3 (I) (110) seed planes on well-defined h-BN surface after decomposition of rhodium precursor. By utilizing the Rh/h-BN catalyst in methane partial oxidation, syngas is successfully produced solely following the direct route with keeping a H2 /CO ratio of 2, which makes it ideal for most downstream chemical processes.

7.
Chem Commun (Camb) ; 57(27): 3403-3406, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33687032

RESUMO

A combination of in situ XANES, temperature programmed oxidation, kinetic and density functional theory results demonstrate that the d-band centers (εd) of Au and Pt metals are upshifted when 39.9 V m-1 of electric field is applied. This leads to the enhancement of the adsorption strength of CO on both metals, and, thus, results in the promotion (+15%) and the depression (-23%) of CO conversions on Au and Pt, respectively, in the CO oxidation.

8.
Chem Commun (Camb) ; 54(52): 7147-7150, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29882952

RESUMO

Catalytic activity was efficiently tuned via manipulating the electronic state of a catalyst, induced by a facile doping method in a metal/graphene system. The strategy was proven to be applicable to not only transition metal but also noble metal catalysts in CO hydrogenation and 4-nitrophenol reduction.

9.
Chem Commun (Camb) ; 53(29): 4116-4119, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28349146

RESUMO

N2O activation of Cu-MOR enhanced methanol production at elevated temperatures, to a greater extent than activation by O2 under optimal conditions. The increase in methanol production by N2O activation was attributed to the facile formation of an active copper center with no formation of inactive intermediate species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA