Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(11): 5704-5780, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38666439

RESUMO

Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.

2.
ACS Macro Lett ; 13(1): 28-33, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38100721

RESUMO

We report a rapid postgrafting reaction to prepare alkyl ammonium functionalized polycarbazoles from a commercially available monomer. This novel synthetic approach provides benefit to preparing the high molecular weight quaternized polycarbazoles within 1 h of Friedel-Crafts polycondensation, avoiding the synthesis and purification step to prepare a functionalized monomer. The postgrafting reaction produces hexyl alkyl ammonium functionalized polycarbazole with 100% grafting degree. However, the postgrafting reaction produced only 60% grafting with propyl alkyl ammonium due to the competitive elimination reaction because of the higher acidity of ß-hydrogen in the propyl alkyl group resulting from the proximity of the bromide and ammonium groups. The hexyl alkyl ammonium functionalized polycarbazole has a high hydroxide conductivity of 103 mS cm-1 at 80 °C and showed excellent alkaline stability with less than 3% loss of ion group after 1 M NaOH treatment at 80 °C for 500 h. This study highlights that the postgrafting reaction provides a pathway for the scale-up synthesis of quaternized aryl ether-free polyaromatics.

3.
ACS Macro Lett ; 12(12): 1648-1653, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37987786

RESUMO

Colloidal Nafion morphology plays a critical role in determining the performance of fuel cells and electrolyzers. While small-angle neutron scattering (SANS) studies previously described Nafion in liquid media as dispersed cylinders, the analysis remains nonunique with multiple possible morphological descriptions of the data. Here, using SANS and all-atomistic molecular dynamics, we confirm that Nafion morphology in liquid media differs substantially depending on dispersing agent and dispersion method. H+ Nafion dispersed in N-methyl pyrrolidone forms swollen cluster particles with physically cross-linked ionic groups. Scattering profiles from dispersed Nafion membrane have a large structure factor feature not observed for redispersed Nafion D-521. H+ Nafion dispersed in water has a highly elongated cylindrical morphology (radius = 10 ± 1.5 Å, height = 358 ± 4.7 Å) with fully dissociated and solvated sulfonic acid groups on the particle wall. These results highlight an important discrepancy between the methods of preparing Nafion dispersions and the use of simplified analysis techniques to describe Nafion morphology.

4.
Adv Sci (Weinh) ; 10(34): e2303914, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37814366

RESUMO

Ionomeric binders in catalyst layers, abbreviated as ionomers, play an essential role in the performance of polymer-electrolyte membrane fuel cells and electrolyzers. Due to environmental issues associated with perfluoroalkyl substances, alternative hydrocarbon ionomers have drawn substantial attention over the past few years. This review surveys literature to discuss ionomer requirements for the electrodes of fuel cells and electrolyzers, highlighting design principles of hydrocarbon ionomers to guide the development of advanced hydrocarbon ionomers.

5.
ACS Appl Mater Interfaces ; 13(43): 50957-50964, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34665589

RESUMO

Anion-exchange membrane electrolyzer cells (AEMECs) are one of the most promising technologies for carbon-neutral hydrogen production. Over the past few years, the performance and durability of AEMECs have substantially improved. Herein, we report an engineered liquid/gas diffusion layer (LGDL) with tunable pore morphologies that enables the high performance of AEMECs. The comparison with a commercial titanium foam in the electrolyzer indicated that the engineered LGDL with thin-flat and straight-pore structures significantly improved the interfacial contacts, mass transport, and activation of more reaction sites, leading to outstanding performance. We obtained a current density of 2.0 A/cm2 at 1.80 V with an efficiency of up to 81.9% at 60 °C under 0.1 M NaOH-fed conditions. The as-achieved high performance in this study provides insight to design advanced LGDLs for the production of low-cost and high-efficiency AEMECs.

6.
Nat Mater ; 20(3): 370-377, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33288898

RESUMO

Modern electrochemical energy conversion devices require more advanced proton conductors for their broad applications. Phosphonated polymers have been proposed as anhydrous proton conductors for fuel cells. However, the anhydride formation of phosphonic acid functional groups lowers proton conductivity and this prevents the use of phosphonated polymers in fuel cell applications. Here, we report a poly(2,3,5,6-tetrafluorostyrene-4-phosphonic acid) that does not undergo anhydride formation and thus maintains protonic conductivity above 200 °C. We use the phosphonated polymer in fuel cell electrodes with an ion-pair coordinated membrane in a membrane electrode assembly. This synergistically integrated fuel cell reached peak power densities of 1,130 mW cm-2 at 160 °C and 1,740 mW cm-2 at 240 °C under H2/O2 conditions, substantially outperforming polybenzimidazole- and metal phosphate-based fuel cells. Our result indicates a pathway towards using phosphonated polymers in high-performance fuel cells under hot and dry operating conditions.

7.
J Phys Chem B ; 124(35): 7725-7734, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32790397

RESUMO

The interaction energy of base-acid plays a key role in acid retention of phosphoric acid (PA)-doped polymer electrolytes under fuel cell operating conditions. Here, we investigate the energetics of proton-accepting and hydroxide-donating organic bases using density functional theory calculations. Because of their weak basicity, proton-accepting organic bases such as benzimidazole have relatively low interaction energy with the acid in the absence of water (15.3-28.0 kcal mol-1). Energetics of the proton-accepting base-PA complex increases by adding water, indicating that the interactions in the base-acid complex strengthen in the presence of water. On the other hand, hydroxide-donating organic bases, such as tetramethylammonium hydroxide, have high interaction energy with PA (∼110 kcal mol-1), which remains high in the presence of water. The chemical shifts of 31P NMR support the energetics of the base-acid complexes. This study further discusses the benefit of incorporating hydroxide-donating organic bases into the polymeric structure over proton-accepting bases as a way to increase acid retention.

8.
ACS Appl Mater Interfaces ; 12(1): 1825-1831, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31820621

RESUMO

Interactions between a catalyst and electrolyte have paramount importance for the performance of electrochemical devices. Here, we present the cation-hydroxide-water coadsorption on the Pt surface by a rotating disk electrode and neutron reflectometry. The rotating disk electrode experiments show that the current density of Pt rapidly dropped at hydrogen oxidation potentials due to tetramethylammonium hydroxide (TMAOH)-water coadsorption. Subsequent neutron reflectometry in 0.1 M TMAOD/D2O reveals that the thickness of the coadsorbed layer increased to 18 Å after 10.5 h exposure at 0.1 V vs reverse hydrogen electrode (RHE). The scattering length density analysis revealed that the TMAOD to water ratio in the coadsorbed layer was 4.5, which was significantly higher than the reportedly highest TMAOH concentration in aqueous solution. Finally, we discuss the potential impact of the coadsorbed layer on the performance and durability of alkaline membrane fuel cells, which sheds light on the material design of high-performance alkaline electrochemical devices.

9.
Acc Chem Res ; 52(9): 2745-2755, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31454229

RESUMO

Anion exchange membranes (AEMs) based on hydroxide-conducting polymers (HCPs) are a key component for anion-based electrochemical energy technology such as fuel cells, electrolyzers, and advanced batteries. Although these alkaline electrochemical applications offer a promising alternative to acidic proton exchange membrane electrochemical devices, access to alkaline-stable and high-performing polymer electrolyte materials has remained elusive until now. Despite vigorous research of AEM polymer design, literature examples of high-performance polymers with good alkaline stability at an elevated temperature are uncommon. Traditional aromatic polymers used in AEM applications contain a heteroatomic backbone linkage, such as an aryl ether bond, which is prone to degradation via nucleophilic attack by hydroxide ion. In this Account, we highlight some of the progress our group has made in the development of advanced HCPs for applications in AEMs and electrode ionomers. We propose that a synthetic polymer design with an all C-C bond backbone and a flexible chain-tethered quaternary ammonium group provides an effective solution to the problem of alkaline stability. Because of the critical demand for such a polymer system, we have established new synthetic strategies for polymer functionalization and polycondensation using an acid catalyst. The first approach is to graft a cationic tethered alkyl group to pre-existing, commercially available styrene-based block copolymers. The second approach is to synthesize high-molecular-weight aromatic backbone polymers using acid-catalyzed polycondensation of arene monomers and a functionalized trifluoromethyl ketone substrate. Both strategies involve a simple two-step reaction process and avoid the use of expensive metal-based catalysts and toxic chemicals, thereby making the synthetic processes easily scalable to large industrial quantities. Both polymer systems were found to have excellent alkaline stability, confirmed by the preservation of ion exchange capacity and ion conductivity of the membrane after an alkaline test under conditions of 1 M NaOH at 80-95 °C. In addition, the advantage of good solvent processability and convenient scalability of the reaction process generates considerable interest in these polymers as commercial standard AEM candidates. AEM fuel cell and electrolyzer tests of some of the developed polymer membranes showed excellent performance, suggesting that this new class of HCPs opens a new avenue to electrochemical devices with real-world applications.

10.
ACS Appl Mater Interfaces ; 11(10): 9696-9701, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30811171

RESUMO

The durability of alkaline anion exchange membrane (AEM) electrolyzers is a critical requirement for implementing this technology in cost-effective hydrogen production. Here, we report that the electrochemical oxidation of the adsorbed phenyl group (found in the ionomer) on oxygen evolution catalysts produces phenol, which may cause performance deterioration in AEM electrolyzers. In-line 1H NMR kinetic analyses of phenyl oxidation in a model organic cation electrolyte shows that catalyst type significantly impacts the phenyl oxidation rate at an oxygen evolution potential. Density functional theory calculations show that the phenyl adsorption is a critical factor determining the phenyl oxidation. This research provides a path for the development of more durable AEM electrolyzers with components that can minimize the adverse impact induced by the phenyl group oxidation, such as the development of novel ionomers with fewer phenyl moieties or catalysts with less phenyl-adsorbing character.

11.
J Am Chem Soc ; 140(8): 2926-2932, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29411604

RESUMO

We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L10-MPt alloy nanoparticle (NP) structure and how to surround the L10-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L10-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Pt shell, especially the two atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO4 solution (at both room temperature and 60 °C) and in the membrane electrode assembly (MEA) at 80 °C. The L10-FePt/Pt catalyst has a mass activity of 0.7 A/mgPt from the half-cell ORR test and shows no obvious mass activity loss after 30 000 potential cycles between 0.6 and 0.95 V at 80 °C in the MEA, meeting the DOE 2020 target (<40% loss in mass activity). We are extending the concept and preparing other L10-MPt/Pt NPs, such as L10-CoPt/Pt NPs, with reduced NP size as a highly efficient ORR catalyst for automotive fuel cell applications.

12.
J Phys Chem Lett ; 8(19): 4918-4924, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28945382

RESUMO

Slow hydrogen oxidation reaction (HOR) kinetics on Pt under alkaline conditions is a significant technical barrier for the development of high-performance hydroxide exchange membrane fuel cells. Here we report that benzene adsorption on Pt is a major factor responsible for the sluggish HOR. Furthermore, we demonstrate that bimetallic catalysts, such as PtMo/C, PtNi/C, and PtRu/C, can reduce the adsorption of benzene and thereby improve HOR activity. In particular, the HOR voltammogram of PtRu/C in 0.1 M benzyl ammonium showed minimal benzene adsorption. Density functional theory calculations indicate that the adsorption of benzyl ammonium on the bimetallic PtRu is endergonic for all four possible orientations of the cation, which explains the significantly better HOR activity observed for the bimetallic catalysts. The new HOR inhibition mechanism described here provides insights for the design of future polymer electrolytes and electrocatalysts for better-performing polymer membrane-based fuel cells.

13.
ACS Macro Lett ; 6(5): 566-570, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35610884

RESUMO

A new design concept for ion-conducting polymers in anion exchange membranes (AEMs) fuel cells is proposed based on structural studies and conformational analysis of polymers and their effect on the properties of AEMs. Thermally, chemically, and mechanically stable terphenyl-based polymers with pendant quaternary ammonium alkyl groups were synthesized to investigate the effect of varying the arrangement of the polymer backbone and cation-tethered alkyl chains. The results demonstrate that the microstructure and morphology of these polymeric membranes significantly influence ion conductivity and fuel cell performance. The results of this study provide new insights that will guide the molecular design of polymer electrolyte materials to improve fuel cell performance.

14.
J Phys Chem Lett ; 7(22): 4464-4469, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27771955

RESUMO

Rotating disk electrode voltammograms and infrared reflection absorption spectra indicate that the hydrogen oxidation reaction of platinum in 0.1 M tetramethylammonium hydroxide solution is adversely impacted by time-dependent and potential-driven cation-hydroxide-water coadsorption. Impedance analysis suggests that the hydrogen oxidation reaction inhibition is mainly caused by the hydrogen diffusion barrier of the coadsorbed trilayer rather than intuitive catalyst site blocking by the adsorbed cation species. These results give useful insights on how to design ionomeric binders for advanced alkaline membrane fuel cells.

15.
ACS Macro Lett ; 4(8): 814-818, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35596501

RESUMO

High molecular weight, quaternary ammonium-tethered poly(biphenyl alkylene)s without alkaline labile C-O bonds were synthesized via acid-catalyzed polycondensation reactions for the first time. Ion-exchange capacity was conveniently controlled by adjusting the feed ratio of two ketone monomers in the polymerization. The resultant anion exchange membranes showed high hydroxide ion conductivity up to 120 mS/cm and excellent alkaline stability at 80 °C. This study provides a new synthetic strategy for the preparation of anion exchange membranes with robust fuel cell performance and excellent stability.

16.
ACS Appl Mater Interfaces ; 6(8): 5779-88, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24689914

RESUMO

Structure-property-performance relationships of disulfonated poly(arylene ether sulfone) multiblock copolymer membranes were investigated for their use in direct methanol fuel cell (DMFC) applications. Multiple series of reactive polysulfone, polyketone, and polynitrile hydrophobic block segments having different block lengths and molecular composition were synthesized and reacted with a disulfonated poly(arylene ether sulfone) hydrophilic block segment by a coupling reaction. Large-scale morphological order of the multiblock copolymers evolved with the increase of block size that gave notable influence on mechanical toughness, water uptake, and proton/methanol transport. Chemical structural changes of the hydrophobic blocks through polar group, fluorination, and bisphenol type allowed further control of the specific properties. DMFC performance was analyzed to elicit the impact of structural variations of the multiblock copolymers. Finally, DMFC performances of selected multiblock copolymers were compared against that of the industrial standard Nafion in the DMFC system.

17.
Korean Circ J ; 43(8): 565-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24044017

RESUMO

Clinical features of acute myocarditis range from a subclinical state to a fulminant state. Fulminant myocarditis with ventricular arrhythmia or atrioventricular block is associated with a high mortality rate. In cases in which aggressive medical therapy for fulminant myocarditis is not likely to be successful, intensive and emergency mechanical circulatory support, such as extracorporeal membrane oxygenation (ECMO) or intra-aortic balloon pump, should be considered. We report life salvage of acute fulminant myocarditis in a 53-year-old woman presented with malignant arrhythmia and cardiogenic shock supported by ECMO.

18.
Tuberc Respir Dis (Seoul) ; 73(3): 182-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23166553

RESUMO

Cryptococcosis is an invasive fungal infection, which is more common in immunocompromised patients. However, pulmonary cryptococcosis can occur in immunocompetent patients and should be considered on a differential diagnosis for nodular or mass-like lesions in chest radiograph. Recently, we experienced a patient with pulmonary cryptococcosis, successfully treated with oral fluconazole therapy. A 74-year-old female patient was referred for an evaluation of abnormal images, a large consolidative mass with multiple nodular consolidations and small nodules that mimics primary lung cancer with multiple lung to lung metastases. Computed tomography-guided lung biopsy confirmed the diagnosis of pulmonary cryptococcosis. The follow-up image taken after 4 months with oral fluconazole treatment showed marked improvement.

19.
ACS Macro Lett ; 1(12): 1403-1407, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-35607114

RESUMO

The morphology of Nafion (EW = 1000, Na+ form) in dilute solvents is investigated using small angle neutron scattering (SANS) and 19F NMR. SANS modeling indicates three types of particle morphology: (i) a well-defined cylindrical dispersion in glycerol and in ethylene glycol with different degrees of solvent penetration; (ii) a less-defined, highly solvated large particle (>200 nm) in water/isopropanol mixtures; and (iii) a random-coil conformation (true solution behavior) in N-methylpyrrolidone. These distinct morphological characteristics of Nafion are consistent with the main and side chain mobilities measured by 19F NMR.

20.
Annu Rev Chem Biomol Eng ; 1: 123-48, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22432576

RESUMO

The proton conductivity of polymer electrolytes is critical for fuel cells and has therefore been studied in significant detail. The conductivity of sulfonated polymers has been linked to material characteristics to elucidate trends. Mass-based measurements based on water uptake and ion exchange capacity are two of the most common material characteristics used to make comparisons between polymer electrolytes, but they have significant limitations when correlated to proton conductivity. These limitations arise in part because different polymers can have significantly different densities and because conduction occurs over length scales more appropriately represented by volume measurements rather than mass. Herein we establish and review volume-related parameters that can be used to compare the proton conductivity of different polymer electrolytes. Morphological effects on proton conductivity are also considered. Finally, the impact of these phenomena on designing next-generation sulfonated polymers for polymer electrolyte membrane fuel cells is discussed.


Assuntos
Eletrólitos/química , Polímeros/química , Sulfonas/química , Fontes de Energia Bioelétrica , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA