Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 5076, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658688

RESUMO

Clay minerals and pedogenic metal (oxyhydr)oxides are the most reactive soil mineral constituents controlling the long-term persistence of organic carbon (OC) in terrestrial ecosystems. However, their co-occurrence in most soils complicates direct assessment of their individual contribution to OC persistence. Making use of unique mineralogical combinations in soils located in the East Usambara Mountains of Tanzania, we disentangled the contribution of clay-sized aluminous minerals (kaolinite, gibbsite) and pedogenic Fe (oxyhydr)oxides (predominant goethite and hematite) on OC storage and stabilization under natural forests and croplands. Topsoil samples, varying in contents but not types of aluminous clays and pedogenic Fe (oxyhydr)oxides, were identified by selective extractions, X-ray diffraction, and Mössbauer spectroscopy. Associated abundance of particulate and mineral-associated organic matter (OM) was quantified by density fractionation and their changes during land-use conversion were determined as a measure of OC persistence. Additionally, we assessed the resistance of OC to chemical oxidation as well as microbial decomposition in a 50-day laboratory incubation. We found that the ratio of pedogenic Fe to aluminous clay is more consequential for OC storage and stabilization than their individual contents, despite the fact that Fe (oxyhydr)oxides generally exert a stronger impact on OC than aluminous clays. Conjunction of large amounts of Fe (oxyhydr)oxides with low aluminous clay contents caused the strongest accumulation of mineral-associated OC, a low soil respiration, high OC stability against chemical oxidation, and high OC persistence during land-use change. Our study suggests that certain mineralogical combinations in the humid tropics alleviate OM losses during land conversion because of the strong and selective mineral control on OC stabilization, particular if the weight ratio of pedogenic Fe to aluminous clay exceeds the threshold range of 0.44‒0.56.

3.
Plants (Basel) ; 9(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255572

RESUMO

Understanding the genetic diversity present amongst crop genotypes is an efficient utilization of germplasm for genetic improvement. The present study was aimed at evaluating genetic diversity and population structure of 48 pigeonpea genotypes from four populations collected from diverse sources. The 48 pigeonpea entries were genotyped using 33 simple sequence repeat (SSR) markers that are polymorphic to assess molecular genetic diversity and genetic relatedness. The informative marker combinations revealed a total of 155 alleles at 33 loci, with an average of 4.78 alleles detected per marker with the mean polymorphic information content (PIC) value of 0.46. Population structure analysis using model based revealed that the germplasm was grouped into two subpopulations. The analysis of molecular variance (AMOVA) revealed that 53.3% of genetic variation existed within individuals. Relatively low population differentiation was recorded amongst the test populations indicated by the mean fixation index (Fst) value of 0.032. The Tanzanian pigeonpea germplasm collection was grouped into three major clusters. The clustering pattern revealed a lack of relationship between geographic origin and genetic diversity. This study provides a foundation for the selection of parental material for genetic improvement.

4.
Ecol Evol ; 9(13): 7849-7860, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346445

RESUMO

Pest rodents remain key biotic constraints to cereal crops production in the East African region where they occur, especially in seasons of outbreaks. Despite that, Uganda has scant information on rodents as crop pests to guide effective management strategies.A capture-mark-recapture (CMR) technique was employed to study the ecology of small rodents, specifically to establish the species composition and community structure in a maize-based agro ecosystem. Trapping of small rodents was conducted in permanent fallow land and cultivated fields, with each category replicated twice making four study grids. At each field, a 60 × 60 m grid was measured and marked with permanent trapping points spaced at 10 × 10 m, making a total of 49 trapping points/grids. Trapping was conducted monthly at 4-week interval for three consecutive days for two and half years using Sherman live traps.Eleven identified small rodent species and one insectivorous small mammal were recorded with Mastomys natalensis being the most dominant species (over 60.7%). Other species were Mus triton (16.1%), Aethomys hendei (6.7%), Lemniscomys zebra (5.2%), Lophuromys sikapusi (4.8%), Arvicanthis niloticus (0.9%), Gerbilliscus kempi (0.1%), Graphiurus murinus (0.1%), Steatomys parvus (0.1%), Dasymys incomtus (0.1%), and Grammomys dolichurus (0.1%). Spatially, species richness differed significantly (p = 0.0001) between the studied field habitats with significantly higher richness in fallow land compared with cultivated fields.Temporally, total species richness and abundance showed a significant interaction effect over the months, years, and fields of trapping with significantly (p = 0.001) higher abundances during months of wet seasons and in the first and third year of trapping. In terms of community structure, higher species diversity associated more with fallow field habitats but also with certain rare species found only in cultivated fields.Synthesis and applications. Based on these findings, management strategies can be designed to target the key pest species and the most vulnerable habitats thus reducing the impact they can inflict on field crops.

5.
Tanzan J Health Res ; 16(3): 136-49, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26867274

RESUMO

Human plague has been a recurring public health threat in some villages in the Western Usambara Mountains, Tanzania, in the period between 1980 and 2004. Despite intensive past biological and medical research, the reasons for the plague outbreaks in the same set of villages remain unknown. Plague research needs to broaden its scope and formulate new hypotheses. This study was carried out to establish relationships between the nature and the spatial extent of selected human activities on one hand, and the reported plague cases on the other hand. Three outdoor activities namely, fetching water, collecting firewood and going to the market, were selected. Through enquiries the activity patterns related to these activities were mapped in 14 villages. Standard deviation ellipses represent the extent of action spaces. Over 130 activity types were identified and listed. Of these, fetching water, collecting firewood and going to the market were used for further analysis. The results indicate a significant correlation between the plague frequency and the size of these action spaces. Different characteristics of land use and related human activities were correlated with the plague frequency at village and hamlet levels. Significant relationships were found between plague frequency and specific sources of firewood and water, and specific market places.


Assuntos
Atividades Humanas , Peste/epidemiologia , Geografia , Humanos , Tecnologia de Sensoriamento Remoto , Tanzânia/epidemiologia
6.
Tanzan J Health Res ; 16(3): 150-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26867275

RESUMO

Since 1980 plague has been a human threat in the Western Usambara Mountains in Tanzania. However, the spatial-temporal pattern of plague occurrence remains poorly understood. The main objective of this study was to gain understanding of human activity patterns in relation to spatial distribution of fleas in Lushoto District. Data were collected in three landscapes differing in plague incidence. Field survey coupled with Geographic Information System (GIS) and physical sample collections were used to collect data in wet (April to June 2012) and dry (August to October 2012) seasons. Data analysis was done using GIS, one-way ANOVA and nonparametric statistical tools. The degree of spatial co-occurrence of potential disease vectors (fleas) and humans in Lushoto focus differs significantly (p ≤ 0.05) among the selected landscapes, and in both seasons. This trend gives a coarse indication of the possible association of the plague outbreaks and the human frequencies of contacting environments with fleas. The study suggests that plague surveillance and control programmes at landscape scale should consider the existence of plague vector contagion risk gradient from high to low incidence landscapes due to human presence and intensity of activities.


Assuntos
Atividades Humanas , Peste/epidemiologia , Sifonápteros , Animais , Surtos de Doenças , Ecossistema , Sistemas de Informação Geográfica , Geografia , Humanos , Estações do Ano , Tanzânia/epidemiologia
7.
Tanzan J Health Res ; 16(3): 161-72, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26867276

RESUMO

Small mammals particularly rodents, are considered the primary natural hosts of plague. Literature suggests that plague persistence in natural foci has a root cause in soils. The objective of this study was to investigate the relationship between on the one hand landforms and associated soil properties, and on the other hand small mammals and fleas in West Usambara Mountains in Tanzania, a plague endemic area. Standard field survey methods coupled with Geographical Information System (GIS) technique were used to examine landform and soils characteristics. Soil samples were analysed in the laboratory for physico-chemical properties. Small mammals were trapped on pre-established landform positions and identified to genus/species level. Fleas were removed from the trapped small mammals and counted. Exploration of landform and soil data was done using ArcGIS Toolbox functions and descriptive statistical analysis. The relationships between landforms, soils, small mammals and fleas were established by generalised linear regression model (GLM) operated in R statistics software. Results show that landforms and soils influence the abundance of small mammals and fleas and their spatial distribution. The abundance of small mammals and fleas increased with increase in elevation. Small mammal species richness also increases with elevation. A landform-soil model shows that available phosphorus, slope aspect and elevation were statistically significant predictors explaining richness and abundance of small mammals. Fleas' abundance and spatial distribution were influenced by hill-shade, available phosphorus and base saturation. The study suggests that landforms and soils have a strong influence on the richness and evenness of small mammals and their fleas' abundance hence could be used to explain plague dynamics in the area.


Assuntos
Mamíferos/parasitologia , Peste/epidemiologia , Roedores/parasitologia , Solo/química , Animais , Reservatórios de Doenças , Ecossistema , Infestações por Pulgas/epidemiologia , Infestações por Pulgas/veterinária , Sistemas de Informação Geográfica , Peste/transmissão , Dinâmica Populacional , Estações do Ano , Sifonápteros , Tanzânia/epidemiologia
8.
Tanzan J Health Res ; 16(3): 173-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26867277

RESUMO

Small mammals play a role in plague transmission as hosts in all plague endemic areas. Information on distribution and diversity of small mammals is therefore important for plague surveillance and control in such areas. The objective of this study was to investigate small mammals' diversity and their distribution in plague endemic area in the West Usambara Mountains in north-eastern Tanzania. Landsat images and field surveys were used to select trapping locations in different landscapes. Three landscapes with different habitats were selected for trapping of small mammals. Three types of trap were used in order to maximise the number of species captured. In total, 188 animals and thirteen species were captured in 4,905 trap nights. Praomys delectorum and Mastomys natalensis both reported as plague hosts comprised 50% of all the animals trapped. Trap success increased with altitude. Species diversity was higher in plantation forest followed by shrub, compared to other habitats, regardless of landscape type. It would therefore seem that chances of plague transmission from small mammals to humans are much higher under shrub, natural and plantation forest habitats.


Assuntos
Biodiversidade , Mamíferos , Peste/epidemiologia , Densidade Demográfica , Animais , Ecossistema , Geografia , Tanzânia/epidemiologia
9.
Tanzan J Health Res ; 16(3): 182-93, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26867278

RESUMO

Previous studies suggest that rodent burrows, a proxy for rodent population are important for predicting plague risk areas. However, studies that link landform, surface attributes and rodent burrows in the Western Usambara Mountains in Tanzania are scanty. Therefore, this study was conducted in plague endemic area of the Western Usambara Mountains in northern, Tanzania, to explore the relationship between rodent burrows, and landform and surface attributes. The study was carried out in three areas corresponding to high (Lokome), medium (Lukozi) and low.(Mwangoi) frequency of reported plague cases. Data were collected from 117, 200 and 170 observation sites for Lokome, Lukozi and Mwangoi, respectively using 100 m x 200 m quadrats. Remote sensing and field surveys were used to collect data on landform and surface attributes. Rodent burrows were surveyed and quantified by counting the number of burrows in 20m x 20m grids demarcated on the main 100m x 200m quadrats. The collected data were analysed in R software using boosted regression trees (BRT) technique. Rodent burrows were found at an elevation of above 1600m in the high and medium plague frequency landscapes. No burrows were found in the low plague frequency landscape situated below 1500m. BRT analysis shows a significant relationship between landform characteristics and rodent burrows in both high and medium plague frequency landscapes. Overall, elevation and hillshade are the most important determinants of rodent burrow distribution in the studied landscapes. It is concluded that in high altitudes, specific landform attributes (hill-shade, slope, elevation) and vegetation cover- favour rodent burrowing.


Assuntos
Densidade Demográfica , Tecnologia de Sensoriamento Remoto , Roedores , Altitude , Animais , Ecossistema , Geografia , Peste/epidemiologia , Tanzânia/epidemiologia
10.
Tanzan J Health Res ; 16(3): 194-205, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26867279

RESUMO

Human plague still exists in different parts of the world, including some landscapes in north-eastern Tanzania. Wherever the hotspot of plague, small mammals seem to play a key role as host. The objective of this study was to investigate the relationship between vegetation habitats types and small mammals in a plague endemic area of Lushoto District in Tanzania. A combination of field survey and Landsat images was used to identify the vegetation habitats. Small mammals were trapped in the mapped vegetation units, and identified. In total, six main types of vegetation habitats were investigated. A total of 13 small mammal species, potentially related to plague were trapped. Results show that annual cultivated crops habitat accounted for 80% of Mastomys natalensis while natural forest accounted for 60% of Praomys delectorum. These findings have shed new light on the diversity of rodents in different habitats of natural and semi-natural vegetations, and agricultural crops in the study area, which is an important intermediate step in unravelling the complex human plague system.


Assuntos
Mamíferos , Peste/epidemiologia , Plantas , Densidade Demográfica , Animais , Ecossistema , Geografia , Humanos , Tanzânia/epidemiologia
11.
Tanzan J Health Res ; 16(3): 207-18, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26867280

RESUMO

Literature suggests that higher resolution remote sensing data integrated in Geographic Information System (GIS) can provide greater possibility to refine the analysis of land cover and terrain characteristics for explanation of abundance and distribution of plague hosts and vectors and hence of health risk hazards to humans. These technologies are not widely used in East Africa for studies on diseases including plague. The objective of this study was to refine the analysis of single and combined land cover and terrain characteristics in order to gain an insight into localized plague infection risks in the West Usambara Mountains in north-eastern Tanzania. The study used a geospatial approach to assess the influence of land cover and terrain factors on the abundance and spatial distribution of plague hosts (small mammals) and plague vectors (fleas). It considered different levels of scale and resolution. Boosted Regression Tree (BRT) statistical method was used to clarify the relationships between land cover and terrain variables with small mammals and fleas. Results indicate that elevation positively influenced the presence of small mammals. The presence of fleas was clearly influenced by land management features such as miraba. Medium to high resolution remotely sensed data integrated in a GIS have been found to be quite useful in this type of analysis. These findings contribute to efforts on plague surveillance and awareness creation among communities on the probable risks associated with various landscape factors during epidemics.


Assuntos
Ecossistema , Sistemas de Informação Geográfica , Peste/epidemiologia , Tecnologia de Sensoriamento Remoto , Animais , Biodiversidade , Geografia , Humanos , Mamíferos , Plantas , Densidade Demográfica , Risco , Sifonápteros , Tanzânia/epidemiologia
12.
Tanzan J Health Res ; 16(3): 219-28, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26867281

RESUMO

Small mammals are considered to be involved in the transmission cycle of bubonic plague, still occurring in different parts of the world, including the Lushoto District in Tanzania. The objective of this study was to determine the relationship between land use types and practices and small mammal abundance and distribution. A field survey was used to collect data in three landscapes differing in plague incidences. Data collection was done both in the wet season (April-June 2012) and dry season (August-October 2012). Analysis of variance and Boosted Regression Trees (BRT) modelling technique were used to establish the relationship between land use and small mammal abundance and distribution. Significant variations (p ≤ 0.05) of small mammal abundance among land use types were identified. Plantation forest with farming, natural forest and fallow had higher populations of small mammals than the other aggregated land use types. The influence of individual land use types on small mammal abundance level showed that, in both dry and wet seasons, miraba and fallow tended to favour small mammals' habitation whereas land tillage practices had the opposite effect. In addition, during the wet season crop types such as potato and maize appeared to positively influence the distribution and abundance of small mammals which was attributed to both shelter and food availability. Based on the findings from this study it is recommended that future efforts to predict and map spatial and temporal human plague infection risk at fine scale should consider the role played by land use and associated human activities on small mammal abundance and distribution.


Assuntos
Atividades Humanas , Mamíferos , Densidade Demográfica , Agricultura , Animais , Ecossistema , Geografia , Humanos , Peste/epidemiologia , Plantas , Risco , Estações do Ano , Tanzânia/epidemiologia
13.
Tanzan J Health Res ; 16(3): 229-39, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26867282

RESUMO

Heterogeneity in the landscapes of West Usambara Mountains on land use and human activities has been reported. However, the interface of land use patterns and human modified soils with small mammal and flea abundance for possible explanation of plague has not been explored. This study was carried out to determine the link between anthropogenic soils and land use patterns on small mammal and flea abundance and the occurrence of reported plague in the Western Usambara Mountains in Tanzania. Standard soil survey methods were used to identify and describe soils and land use patterns on lower slopes and valley bottoms on which the surrounding villages are reported to have high and medium plague frequencies. The identified soils were characterised in terms of their morphological and physico-chemical properties and classified according to FAO-World Reference Base for Soil Resources. Small mammals were trapped on the same landscape positions and identified to genus/species level. Fleas were removed from the trapped small mammals, counted and identified to species level. In total 57 small mammals were captured from which 32 fleas were collected. Results show that human settlements and mixed cultivation on lower slopes and continuous vegetable cropping in the valley bottoms are dominant land use types. Intensive use of forest soils, manuring and irrigation on farms in the studied landscapes have contributed to the development of uniquely human modified soils namely Hortic Anthrosols in the lower slopes and Plaggic Irragric Hortic Anthrosols in valley bottoms. The identified anthropogenic soils and land use patterns are associated with high abundance of small mammals (Mastomys natalensis) and flea species (Xenopsylla brasiliensis and Dinopsyllus lypusus). This phenomenon is vividly apparent in the villages with medium to high plague frequencies. The study suggests that plague surveillance programmes should consider the existing relationship between anthropogenic soils, land use patterns, small mammal and flea abundance.


Assuntos
Atividades Humanas , Mamíferos/parasitologia , Densidade Demográfica , Sifonápteros , Agricultura , Animais , Geografia , Humanos , Peste/epidemiologia , Solo , Tanzânia/epidemiologia
14.
Tanzan J Health Res ; 16(3): 240-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26867283

RESUMO

Fleas associated with different rodent species are considered as the major vectors of bubonic plague, which is still rampant in different parts of the world. The objective of this study was to investigate the contribution of land use to rodent flea load distribution at fine scale in the plague endemic area of north-eastern Tanzania. Data was collected in three case areas namely, Shume, Lukozi and Mwangoi, differing in plague incidence levels. Data collection was carried out during both wet and dry seasons of 2012. Analysis of Variance and Boosted Regression Tree (BRT) statistical methods were used to clarify the relationships between fleas and specific land use characteristics. There was a significant variation (P ≤ 0.05) of flea indices in different land use types. Fallow and natural forest had higher flea indices whereas plantation forest mono-crop and mixed annual crops had the lowest flea indices among the aggregated land use types. The influence of individual land use types on flea indices was variable with fallow having a positive effect and land tillage showing a negative effect. The results also demonstrated a seasonal effect, part of which can be attributed to different land use practices such as application of pesticides, or the presence of grass strips around fields. These findings suggest that land use factors have a major influence on rodent flea abundance which can be taken as a proxy for plague infection risk. The results further point to the need for a comprehensive package that includes land tillage and crop type considerations on one hand and the associated human activities on the other, in planning and implementation of plague control interventions.


Assuntos
Infestações por Pulgas , Atividades Humanas , Roedores/parasitologia , Sifonápteros , Agricultura , Animais , Geografia , Humanos , Peste/epidemiologia , Plantas , Estações do Ano , Tanzânia/epidemiologia
15.
Int J Health Geogr ; 9: 60, 2010 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-21144014

RESUMO

BACKGROUND: In the tropics, rainfall data are seldom accurately recorded, and are often discontinuous in time. In the scope of plague-research in northeast Tanzania, we adapted previous research to reconstruct rainfall patterns at a suitable resolution (1 km), based on time series of NDVI: more accurate satellite imagery was used, in the form of MODIS NDVI, and rainfall data were collected from the TRMM sensors instead of in situ data. First, we established a significant relationship between monthly rainfall and monthly composited MODIS NDVI. The established linear relationship was then used to reconstruct historic precipitation patterns over a mountainous area in northeastern Tanzania. RESULTS: We validated the resulting precipitation estimates with in situ rainfall time series of three meteorological stations located in the study area. Taking the region's topography into account, a correlation coefficient of 0.66 was obtained for two of the three meteorological stations. Our results suggest that the adapted strategy can be applied fruitfully to estimate rainfall variability and seasonality, despite the underestimation of overall rainfall rates. Based on this model, rainfall in previous years (1986) is modelled to obtain a dataset with which we can compare plague occurrence in the area. A positive correlation of 82% is obtained between high rainfall rates and plague incidence with a two month lag between rainfall and plague cases. CONCLUSIONS: We conclude that the obtained results are satisfactory in support of the human plague research in which this study is embedded, and that this approach can be applied in other studies with similar goals.


Assuntos
Coleta de Dados/métodos , Peste/epidemiologia , Chuva , Comunicações Via Satélite/estatística & dados numéricos , Clima , Geografia , Humanos , Modelos Lineares , Modelos Estatísticos , Peste/transmissão , Medição de Risco , Estatísticas não Paramétricas , Tanzânia/epidemiologia
16.
Am J Trop Med Hyg ; 82(3): 492-500, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20207880

RESUMO

A natural focus of plague exists in the Western Usambara Mountains of Tanzania. Despite intense research, questions remain as to why and how plague emerges repeatedly in the same suite of villages. We used human plague incidence data for 1986-2003 in an ecological-niche modeling framework to explore the geographic distribution and ecology of human plague. Our analyses indicate that plague occurrence is related directly to landscape-scale environmental features, yielding a predictive understanding of one set of environmental factors affecting plague transmission in East Africa. Although many environmental variables contribute significantly to these models, the most important are elevation and Enhanced Vegetation Index derivatives. Projections of these models across broader regions predict only 15.5% (under a majority-rule threshold) or 31,997 km(2) of East Africa as suitable for plague transmission, but they successfully anticipate most known foci in the region, making possible the development of a risk map of plague.


Assuntos
Modelos Biológicos , Peste/epidemiologia , Surtos de Doenças , Ecossistema , Humanos , Fatores de Risco , Estações do Ano , Tanzânia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA