Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430796

RESUMO

We prepared electroactive PVDF membranes, which were subjected to mechanical as well as dual electro-mechanical signals and their responses were detected by the evoked electrical pulses. The aim was to obtain primarily electric energy that could be used for light signalling, sensing of the membrane properties and membrane motion detection. The obtained data showed the unique as well as usable properties of PVDF membranes. From this point of view, the gain and analysis of the electrical responses to combined electro-mechanical loads of PVDF membranes have been important in terms of identifying the mechanism. The detected electrical response of the PVDF membrane to their electro-mechanical pulses also indicated the possibility of using this phenomenon. Among others, it suggests monitoring of membrane fouling and use for a self-cleaning mechanism.


Assuntos
Eletricidade , Vibração , Movimento (Física) , Transdução de Sinal Luminoso
2.
J Environ Health Sci Eng ; 19(2): 1347-1360, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900271

RESUMO

BACKGROUND: This research paper focuses on removing of arsenic from contaminated water via a nanofibrous polymeric microfiltration membrane, applied in prospective combination with an inorganic sorbent based on iron oxide hydroxide FeO(OH). MATERIALS AND METHODS: Nanofibrous materials were prepared by electrospinning from polyurethane selected by an adsorption test. The chemical composition (FTIR), morphology (SEM, porometry) and hydrophilicity (contact angle) of the prepared nanostructured material were characterized. The process of eliminating arsenic from the contaminated water was monitored by atomic absorption spectroscopy (AAS). The adsorption efficiency of the nanofibrous material and the combination with FeO(OH) was determined, the level of arsenic anchorage on the adsorption filter was assessed by a rinsing test and the selectivity of adsorption in arsenic contaminated mineral water was examined. RESULTS: It was confirmed that the hydrophilic aromatic polyurethane of ester type PU918 is capable of capturing arsenic by complexation on nitrogen in its polymer chains. The maximum As removal efficiency was around 62 %. Arsenic was tightly anchored to the polymeric adsorbent. The adsorption process was sufficiently selective. Furthermore, it was found that the addition of even a small amount of FeO(OH) (0.5 g) to the nanofiber filter would increase the efficiency of As removal by 30 %. CONCLUSIONS: The presented results showed that an adsorption filter based on a polyurethane nanostructured membrane added with an inorganic adsorbent FeO(OH) is a suitable way for the elimination of arsenic from water. However, it is necessary to ensure perfect contact between the surface of the nanostructure and the filtered medium.

3.
Nanotechnology ; 33(7)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34727533

RESUMO

This study focuses on the adsorption kinetics of four highly potent sex hormones (estrone (E1), 17ß-estradiol (E2), 17α-ethinylestradiol (EE2), and estriol (E3)), present in water reservoirs, which are considered a major cause of fish feminization, low sperm count in males, breast and ovarian cancer in females induced by hormonal imbalance. Herein, electrospun polymeric nanostructures were produced from cellulose acetate, polyamide, polyethersulfone, polyurethanes (918 and elastollan), and polyacrylonitrile (PAN) to simultaneously adsorbing these estrogenic hormones in a single step process and to compare their performance. These nanofibers possessed an average fiber diameter in the range 174-330 nm and their specific surface area ranged between 10.2 and 20.9 m2g-1. The adsorption-desorption process was investigated in four cycles to determine the effective reusability of the adsorption systems. A one-step high-performance liquid chromatography technique was developed to detect and quantify concurrently each hormone present in the solution. Experimental data were obtained to determine the adsorption kinetics by applying pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Findings showed that E1, E2 and EE2 best fitted pseudo-second-order kinetics, while E3 followed pseudo-first-order kinetics. It was found that polyurethane Elastollan nanofibers had maximum adsorption capacities of 0.801, 0.590, 0.736 and 0.382 mg g-1for E1, E2, EE2 and E3, respectively. In addition, the results revealed that polyurethane Elastollan nanofibers had the highest percentage efficiency of estrogens removal at ∼58.9% due to its strong hydrogen bonding with estrogenic hormones, while the least removal efficiency for PAN at ∼35.1%. Consecutive adsorption-desorption cycles demonstrated that polyurethane maintained the best efficiency, even after being repeatedly used four times compared to the other polymers. Overall, the findings indicate that all the studied nanostructures have the potential to be effective adsorbents for concurrently eradicating such estrogens from the environment.


Assuntos
Técnicas Eletroquímicas/métodos , Disruptores Endócrinos , Congêneres do Estradiol , Nanofibras/química , Poluentes Químicos da Água , Adsorção , Disruptores Endócrinos/química , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/farmacocinética , Congêneres do Estradiol/química , Congêneres do Estradiol/metabolismo , Congêneres do Estradiol/farmacocinética , Cinética , Membranas Artificiais , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/farmacocinética , Purificação da Água
4.
AMB Express ; 9(1): 183, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31720875

RESUMO

We developed a simple and fast microplate assay for evaluation of the antimicrobial activity of electrospun nanofiber filtration membranes or similar porous materials for water treatment technologies. Resazurin (alamarBlue®) was used as an indicator of the amount of viable experimental microorganisms Gram-negative Escherichia coli, Gram-positive Enterococcus faecalis, and natural wastewater treatment plant effluent bacteria. A bacterial inoculum of concentration 1-3 × 105 CFU mL-1 was pipetted onto the surface of assessed both functionalized and respective control membranes and incubated in 12-well plates for 4 h at 37 °C. Kinetics of resazurin metabolization, i.e. its reduction to fluorescent resorufin, was evaluated fluorimetrically (λex520/λem590 nm). A number of viable bacteria on the membranes expressed as CFU mL-1 was calculated from the kinetic curves by using calibration curves that were constructed for both experimental bacterial species. Antimicrobial activities of the membranes were evaluated by either resazurin assay or modified ISO 20743 plate count assay. Results of both assays showed the significant antimicrobial activity of membranes functionalized with silver nanoparticles for both bacterial species and wastewater treatment plant effluent bacteria as well (log CFU reduction compared to control membrane > 4), while membranes containing specific quaternary ammonium salts were inefficient (log CFU reduction < 1). The suitability of resazurin microplate assay for testing nanofiber filtration membranes and analogous matrices has proven to be a faster and less demanding alternative to the traditionally used approach providing comparable results.

5.
J Nanosci Nanotechnol ; 19(5): 2599-2605, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30501756

RESUMO

Clay mineral vermiculite was treated with silver and copper nitrate solutions and samples were subsequently modified with organic compound (dodecylamine) via solid-solid melt intercalation. Prepared organo-inorgano vermiculites were used as nanofillers to the polyethylene matrix. Mixtures of polyethylene with vermiculite nanofillers, prepared by melt compounding technique, were pressed into thin plates. Structure changes of prepared powder vermiculite nanofillers and polyethylene/vermiculite composites were studied by X-ray diffraction analysis. The X-ray diffraction patterns of vermiculite nanofillers confirm intercalation of dodecylamine into the vermiculite interlayer. Antimicrobial properties of powder vermiculite nanofillers were evaluated by the minimum inhibitory concentration of samples which is needed to completely stop the bacterial growth and polyethylene/vermiculite composites were evaluated by the number of colony forming units survived on surfaces of composite plates. Different bacterial strains were studied: (1) Gram-positive, represented by bacteria Staphylococcus aureus and Enterococcus faecalis, (2) Gram-negative, represented by bacteria Escherichia coli and Pseudomonas aeruginosa, and (3) yeast, Candida albicans. Powder vermiculite nanofillers and surfaces of polyethylene/vermiculite composites showed good antimicrobial effect against tested bacteria and yeast. Powder vermiculite nanofillers show antimicrobial effect already after 30 minutes of tested time. Composite plates exhibited decrease of colony forming units number about 5-7 logarithmic orders depending on bacteria after 24 hours of tested time.


Assuntos
Anti-Infecciosos , Polietileno , Silicatos de Alumínio/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Polietileno/farmacologia
6.
Water Sci Technol ; 69(7): 1496-501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24718342

RESUMO

The aim of this study was to investigate the suitability of a novel electrospun polyurethane nanofibre material for water-treatment purposes. Bacterial removal efficiency was tested in the laboratory by filtering artificial water spiked with Escherichia coli through a 0.25 µm nanofibre membrane. The results were compared with those obtained using a commercial microfiltration material (MV020T) with a similar pore size (0.20 µm). Alongside the laboratory experiments, we also determined filtration efficiency with semi-pilot scale experiments using actual wastewater from the secondary sedimentation tank of a wastewater treatment plant. The laboratory experiments indicated very high log10 removal efficiency, ranging from 5.8 to 6.8 CFU (colony-forming units)/ml. These results were better than those of the commercial membrane (3.8-4.6 CFU/ml). The semi-pilot scale experiment confirmed the membrane's suitability for microbial filtration, with both E. coli and total culturable microorganisms (cultured at both 22 and 36 °C) showing a significant decline compared to the non-filtered control (wastewater from the secondary outlet).


Assuntos
Filtração/instrumentação , Membranas Artificiais , Nanofibras , Poliuretanos/síntese química , Purificação da Água/instrumentação , Escherichia coli , Projetos Piloto , Povidona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA