Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Prog Lipid Res ; 91: 101234, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37169310

RESUMO

Plasmalogen is a major phospholipid of mammalian cell membranes. Recently it is becoming evident that the sn-1 vinyl-ether linkage in plasmalogen, contrasting to the ester linkage in the counterpart diacyl glycerophospholipid, yields differential molecular characteristics for these lipids especially related to hydrocarbon-chain order, so as to concertedly regulate biological membrane processes. A role played by NMR in gaining information in this respect, ranging from molecular to tissue levels, draws particular attention. We note here that a broad range of enzymes in de novo synthesis pathway of plasmalogen commonly constitute that of diacyl glycerophospholipid. This fact forms the basis for systematic crosstalk that not only controls a quantitative balance between these lipids, but also senses a defect causing loss of lipid in either pathway for compensation by increase of the counterpart lipid. However, this inherent counterbalancing mechanism paradoxically amplifies imbalance in differential effects of these lipids in a diseased state on membrane processes. While sharing of enzymes has been recognized, it is now possible to overview the crosstalk with growing information for specific enzymes involved. The overview provides a fundamental clue to consider cell and tissue type-dependent schemes in regulating membrane processes by plasmalogen and diacyl glycerophospholipid in health and disease.


Assuntos
Mamíferos , Plasmalogênios , Animais , Plasmalogênios/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
2.
FASEB J ; 35(1): e21177, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205488

RESUMO

Enzymatic control of lipid homeostasis in the cell is a vital element in the complex organization of life. Phosphatidylserine (PS) is an essential anionic phospholipid of cell membranes, and conducts numerous roles for their structural and functional integrity. In mammalian cells, two distinct enzymes phosphatidylserine synthases-1 (PSS1) and -2 (PSS2) in the mitochondria-associated membrane (MAM) in the ER perform de novo synthesis of PS. It is based on base-exchange reactions of the preexisting dominant phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). While PSS2 specifically catalyzes the reaction "PE â†’ PS," whether or not PSS1 is responsible for the same reaction along with the reaction "PC â†’ PS" remains unsettled despite its fundamental impact on the major stoichiometry. We propose here that a key but the only report that appeared to have put scientists on hold for decades in answering to this issue may be viewed consistently with other available research reports; PSS1 utilizes the two dominant phospholipid classes at a similar intrinsic rate. In this review, we discuss the issue in view of the current information for the enzyme machineries, membrane structure and dynamics, intracellular network of lipid transport, and PS synthesis in health and disease. Resolution of the pending issue is thus critical in advancing our understanding of roles of the essential anionic lipid in biology, health, and disease.


Assuntos
Homeostase , Metabolismo dos Lipídeos , Fosfatidiletanolaminas/biossíntese , Fosfatidilserinas/biossíntese , Animais , Humanos , Membranas Mitocondriais/metabolismo , Transferases de Grupos Nitrogenados/metabolismo
3.
Life Sci Alliance ; 2(4)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31434794

RESUMO

Lipid homeostasis is crucial in human health. Barth syndrome (BTHS), a life-threatening disease typically diagnosed with cardiomyopathy and neutropenia, is caused by mutations in the mitochondrial transacylase tafazzin. By high-resolution 31P nuclear magnetic resonance (NMR) with cryoprobe technology, recently we found a dramatic loss of choline plasmalogen in the tafazzin-knockdown (TAZ-KD) mouse heart, besides observing characteristic cardiolipin (CL) alterations in BTHS. In inner mitochondrial membrane where tafazzin locates, CL and diacyl phosphatidylethanolamine are known to be essential via lipid-protein interactions reflecting their cone shape for integrity of respiratory chain supercomplexes and cristae ultrastructure. Here, we investigate the TAZ-KD brain, liver, kidney, and lymphoblast from patients compared with controls. We identified common yet markedly cell type-dependent losses of ethanolamine plasmalogen as the dominant plasmalogen class therein. Tafazzin function thus critically relates to homeostasis of plasmalogen, which in the ethanolamine class has conceivably analogous and more potent molecular functions in mitochondria than diacyl phosphatidylethanolamine. The present discussion of a loss of plasmalogen-protein interaction applies to other diseases with mitochondrial plasmalogen loss and aberrant forms of this organelle, including Alzheimer's disease.


Assuntos
Mitocôndrias/metabolismo , Plasmalogênios/metabolismo , Aciltransferases , Animais , Síndrome de Barth/genética , Síndrome de Barth/fisiopatologia , Cardiolipinas/metabolismo , Cardiomiopatias/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membranas Mitocondriais/metabolismo , Plasmalogênios/fisiologia , Fatores de Transcrição/metabolismo
4.
Biochemistry ; 57(14): 2162-2175, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29557170

RESUMO

Tafazzin is the mitochondrial enzyme that catalyzes transacylation between a phospholipid and a lysophospholipid in remodeling. Mutations in tafazzin cause Barth syndrome, a potentially life-threatening disease with the major symptom being cardiomyopathy. In the tafazzin-deficient heart, cardiolipin (CL) acyl chains become abnormally heterogeneous unlike those in the normal heart with a single dominant linoleoyl species, tetralinoleoyl CL. In addition, the amount of CL decreases and monolysocardiolipin (MLCL) accumulates. Here we determine using high-resolution 31P nuclear magnetic resonance with cryoprobe technology the fundamental phospholipid composition, including the major but oxidation-labile plasmalogens, in the tafazzin-knockdown (TAZ-KD) mouse heart as a model of Barth syndrome. In addition to confirming a lower level of CL (6.4 ± 0.1 → 2.0 ± 0.4 mol % of the total phospholipid) and accumulation of MLCL (not detected → 3.3 ± 0.5 mol %) in the TAZ-KD, we found a substantial reduction in the level of plasmenylcholine (30.8 ± 2.8 → 18.1 ± 3.1 mol %), the most abundant phospholipid in the control wild type. A quantitative Western blot revealed that while the level of peroxisomes, where early steps of plasmalogen synthesis take place, was normal in the TAZ-KD model, expression of Far1 as a rate-determining enzyme in plasmalogen synthesis was dramatically upregulated by 8.3 (±1.6)-fold to accelerate the synthesis in response to the reduced level of plasmalogen. We confirmed lyso-plasmenylcholine or plasmenylcholine is a substrate of purified tafazzin for transacylation with CL or MLCL, respectively. Our results suggest that plasmenylcholine, abundant in linoleoyl species, is important in remodeling CL in the heart. Tafazzin deficiency thus has a major impact on the cardiac plasmenylcholine level and thereby its functions.


Assuntos
Síndrome de Barth/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Plasmalogênios/biossíntese , Fatores de Transcrição/deficiência , Acilação , Aciltransferases , Animais , Síndrome de Barth/genética , Síndrome de Barth/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/genética , Proteínas Mitocondriais/genética , Plasmalogênios/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA