Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Cell Sci ; 134(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34676411

RESUMO

Diverse genes associated with familial Parkinson's disease (familial Parkinsonism) have been implicated in mitochondrial quality control. One such gene, PARK7 encodes the protein DJ-1, pathogenic mutations of which trigger its translocation from the cytosol to the mitochondrial matrix. The translocation of steady-state cytosolic proteins like DJ-1 to the mitochondrial matrix upon missense mutations is rare, and the underlying mechanism remains to be elucidated. Here, we show that the protein unfolding associated with various DJ-1 mutations drives its import into the mitochondrial matrix. Increasing the structural stability of these DJ-1 mutants restores cytosolic localization. Mechanistically, we show that a reduction in the structural stability of DJ-1 exposes a cryptic N-terminal mitochondrial-targeting signal (MTS), including Leu10, which promotes DJ-1 import into the mitochondrial matrix for subsequent degradation. Our work describes a novel cellular mechanism for targeting a destabilized cytosolic protein to the mitochondria for degradation.


Assuntos
Doença de Parkinson , Humanos , Mitocôndrias/genética , Doença de Parkinson/genética
2.
Acta Physiol (Oxf) ; 228(2): e13345, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31310704

RESUMO

AIM: Since foods with high hedonic value are often consumed in excess of energetic needs, this study was designed to identify the mechanisms that may counter anorexigenic signalling in the presence of hedonic foods in lean animals. METHODS: Mice, in different states of satiety (fed/fasted, or fed/fasted and treated with ghrelin or leptin, respectively), were allowed to choose between high-fat/high-sucrose and standard foods. Intake of each food type and the activity of hypothalamic neuropetidergic neurons that regulate appetite were monitored. In some cases, food choice was monitored in leptin-injected fasted mice that received microinjections of galanin receptor agonists into the lateral hypothalamus. RESULTS: Appetite-stimulating orexin neurons in the lateral hypothalamus are rapidly activated when lean, satiated mice consume a highly palatable food (PF); such activation (upregulated c-Fos expression) occurred even after administration of the anorexigenic hormone leptin and despite intact leptin signalling in the hypothalamus. The ability of leptin to restrain PF eating is restored when a galanin receptor 2 (Gal2R) agonist is injected into the lateral hypothalamus. CONCLUSION: Hedonically-loaded foods interrupt the inhibitory actions of leptin on orexin neurons and interfere with the homeostatic control of feeding. Overeating of palatable foods can be curtailed in lean animals by activating Gal2R in the lateral hypothalamus.


Assuntos
Ingestão de Alimentos/fisiologia , Hiperfagia/prevenção & controle , Região Hipotalâmica Lateral/efeitos dos fármacos , Leptina/farmacologia , Neurônios/metabolismo , Receptor Tipo 2 de Galanina/agonistas , Animais , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Galanina/farmacologia , Grelina/metabolismo , Hiperfagia/metabolismo , Hiperfagia/patologia , Região Hipotalâmica Lateral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Orexinas/metabolismo , Receptor Tipo 2 de Galanina/metabolismo
3.
Sci Rep ; 9(1): 15190, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645613

RESUMO

In socially-living species, sleep patterns are often subject to group influences, as individuals adjust to the presence, daily rhythms, and social pressures of cohabitation. However, sleep studies in mice are typically conducted in single-housed individuals. Here, we investigated sleep in a semi-naturalistic environment with freely-moving, group-housed mice using wireless electroencephalographic (EEG) monitoring and video tracking. We found evidence of in-group synchrony of sleep state patterns and effects of social dominance status on sleep quality. These findings highlight the importance of exploring sleep in a social context and are a step toward more informative research on the interplay between social functioning and sleep.


Assuntos
Movimento/fisiologia , Sono/fisiologia , Predomínio Social , Animais , Masculino , Camundongos Endogâmicos ICR
4.
J Oleo Sci ; 68(10): 1003-1009, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31582666

RESUMO

Frankincense essential oil, obtained from Boswellia carteri, is a popular essential oil, which is widely used in many parts of the world. While some of its properties are known, its effects on stress and sleep have not been studied. The effects of frankincense essential oil and its major components, limonene and α-pinene, on plasma corticosterone and glutathione (GSH) levels, as well as on sleep and wakefulness behaviour, were studied in sleep-deprived rats. The substances were applied topically after dilution in jojoba oil (vehicle). As compared to vehicle, frankincense essential oil at a dilution of 1/1000 (1:103) significantly reduced corticosterone levels (p < 0.05). In contrast, its major constituents (α-pinene and limonene), elevated levels of this stress hormone. Frankincense, limonene and α-pinene, all led to significant reductions in plasma GSH levels. Although frankincense dose-dependently reduced plasma concentrations of antioxidant ions albeit to levels insufficient to neutralize oxidative stress; levels of products of oxidative metabolism metabolites were decreased by the frankincense. In sleep-deprived rats, frankincense 1:103 respectively increased and decreased the amount of wakefulness and non-rapid eye movement sleep. Frankincense essential oil can counter the effects of stress by effectively relieving sleep debt and maintaining antioxidant capacity without increasing oxidative stress, and, therefore, may be beneficial in the management of stress.


Assuntos
Antioxidantes/farmacologia , Franquincenso/farmacologia , Óleos Voláteis/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Boswellia/química , Franquincenso/química , Franquincenso/isolamento & purificação , Masculino , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
5.
EMBO Rep ; 20(12): e47728, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31602805

RESUMO

Ubiquitylation of outer mitochondrial membrane (OMM) proteins is closely related to the onset of familial Parkinson's disease. Typically, a reduction in the mitochondrial membrane potential results in Parkin-mediated ubiquitylation of OMM proteins, which are then targeted for proteasomal and mitophagic degradation. The role of ubiquitylation of OMM proteins with non-degradative fates, however, remains poorly understood. In this study, we find that the mitochondrial E3 ubiquitin ligase MITOL/March5 translocates from depolarized mitochondria to peroxisomes following mitophagy stimulation. This unusual redistribution is mediated by peroxins (peroxisomal biogenesis factors) Pex3/16 and requires the E3 ligase activity of Parkin, which ubiquitylates K268 in the MITOL C-terminus, essential for p97/VCP-dependent mitochondrial extraction of MITOL. These findings imply that ubiquitylation directs peroxisomal translocation of MITOL upon mitophagy stimulation and reveal a novel role for ubiquitin as a sorting signal that allows certain specialized proteins to escape from damaged mitochondria.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/química , Mitofagia , Peroxinas/metabolismo , Transporte Proteico , Ubiquitina-Proteína Ligases/química , Ubiquitinação , Proteína com Valosina/metabolismo
6.
Diabetes Metab Syndr Obes ; 11: 835-843, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568471

RESUMO

AIM: Nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH), is known to be associated with type 2 diabetes mellitus (T2DM) in high rate. The improvement in hepatic function due to sodium-glucose co-transporter 2 (SGLT2) inhibitors has been reported in T2DM patients with and without NAFLD. However, only a few studies have attempted to evaluate the role of SGLT2 inhibitors in T2DM patients with biopsy-proven NASH, and no detailed prospective studies including the individual hepatic fibrosis stage have been reported. Therefore, we investigated the effect of canagliflozin on hepatic function in T2DM patients with biopsy-confirmed NASH. METHODS: T2DM patients with NASH (hepatic fibrosis stage 1-3 confirmed via liver biopsy, n=10) were enrolled and received canagliflozin (100 mg) once a day for 12 weeks. The primary end point was change in serum alanine aminotransferase (ALT) levels from baseline to week 12. Secondary end points were liver function/fibrosis markers, metabolic parameters, and safety. RESULTS: The change in ALT from baseline to week 12 was -23.9 U/L (95% CI -48.1 to 0.3, P=0.0526). Significant improvements in several hepatic function/fibrosis markers, such as aspartate aminotransferase, fibrosis-4 index, and FM-fibro index, and metabolic parameters including hemoglobin A1c and body weight were found. No serious or liver-related adverse events were reported. Regarding individual patients, different trends in ALT-lowering effects between stage 1 and stage 2/3 subjects were observed; the degree of ALT-lowering effect tended to be greater in the stage 1 group than in the stage 2/3 group. CONCLUSION: Our results suggest that canagliflozin is effective and well-tolerated in patients with T2DM and NASH. Canagliflozin may be useful for the treatment of T2DM patients with NASH, especially those in early stages of NASH.

7.
Chem Pharm Bull (Tokyo) ; 66(3): 243-250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491258

RESUMO

Phosphodiesterase (PDE) 10A is a dual hydrolase of cAMP and cGMP and highly expressed in striatal medium spiny neurons. Inhibition of PDE10A modulates the activity of medium spiny neurons (MSN) via the regulation of cAMP and cGMP. Signal control of MSN is considered associated with psychotic symptoms. Therefore PDE10A inhibitor is expected as a therapeutic method for psychosis disease such as schizophrenia. Avanafil (1) is a PDE5 inhibitor (treatment for erectile dysfunction) discovered by our company. We paid attention to the homology of PDE10A and PDE5 and took advantage of PDE5 inhibitor library to discover PDE10A inhibitors, and found a series of compounds that exhibit higher potency for PDE10A than PDE5. We transformed the afforded derivatives, which had weak inhibitory activity against PDE10A, and discovered stilbene as a PDE10A inhibitor. Brain penetration of this compound was improved by further conversion of N-containing heterocycles and their substituents. The afforded dimethylaminopyrimidine was effective for rat conditioned avoidance response (CAR) test; however, it did not exhibit good brain penetration. We performed in-depth optimization focusing on substituents of the quinoxaline ring, and produced 3-methyl-7-fluoro quinoxaline. This compound was the most effective in rat CAR test due to its strong PDE10A inhibitory activity and good pharmacokinetics.


Assuntos
Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/química , Pirimidinas/química , Pirimidinas/farmacologia , Quinoxalinas/química , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Sítios de Ligação , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Inibidores de Fosfodiesterase/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Pirimidinas/síntese química , Quinoxalinas/síntese química , Quinoxalinas/farmacologia , Ratos , Relação Estrutura-Atividade
8.
J Sleep Res ; 27(4): e12557, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28695622

RESUMO

Meis homeobox 1 (Meis1) is a transcription factor functioning in the development of the nervous system and the cardiovascular system. Both common and rare variants within the gene have been associated with restless legs syndrome (RLS), while its association with symptoms of insomnia has also been discovered recently. RLS is associated with sleep disturbances, and while Meis1 haploinsufficiency is one of the most promising strategies for an RLS animal model, sleep phenotyping of Meis1 knockout mice has never been conducted. We report a detailed sleep analysis of heterozygous Meis1 knockout mice and challenge it with pramipexole, a dopamine agonist used in the treatment of RLS. At baseline, the Meis1-haploinsufficient mice had a trend towards lower delta power in the electroencephalogram (EEG) during sleep compared to the wild-type littermates, possibly indicating reduced sleep quality, but not sleep fragmentation. Pramipexole had a sleep disrupting effect in both genotype groups. In addition, it exerted differential effects on the EEG power spectra of the two mouse lines, remarkably elevating the theta power of the mutant mice during recovery more than that of the wild-types. In conclusion, Meis1 haploinsufficiency seems to have only a modest effect on sleep, but the gene may interact with the sleep-disrupting effect of dopamine agonists.


Assuntos
Agonistas de Dopamina/toxicidade , Proteína Meis1/genética , Pramipexol/toxicidade , Síndrome das Pernas Inquietas/induzido quimicamente , Síndrome das Pernas Inquietas/genética , Sono/fisiologia , Animais , Haploinsuficiência/efeitos dos fármacos , Haploinsuficiência/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Síndrome das Pernas Inquietas/fisiopatologia , Sono/efeitos dos fármacos
9.
J Neurosci ; 38(2): 441-451, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29196316

RESUMO

Early-life obesity predisposes to obesity in adulthood, a condition with broad medical implications including sleep disorders, which can exacerbate metabolic disturbances and disrupt cognitive and affective behaviors. In this study, we examined the long-term impact of transient peripubertal diet-induced obesity (ppDIO, induced between 4 and 10 weeks of age) on sleep-wake behavior in male mice. EEG and EMG recordings revealed that ppDIO increases sleep during the active phase but reduces resting-phase sleep quality. This impaired sleep phenotype persisted for up to 1 year, although animals were returned to a non-obesiogenic diet from postnatal week 11 onwards. To better understand the mechanisms responsible for the ppDIO-induced alterations in sleep, we focused on the lateral hypothalamus (LH). Mice exposed to ppDIO did not show altered mRNA expression levels of orexin and melanin-concentrating hormone, two peptides that are important for sleep-wake behavior and food intake. Conversely, the LH of ppDIO-exposed mice had reduced contents of serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter involved in both sleep-wake and satiety regulation. Interestingly, an acute peripheral injection of the satiety-signaling peptide YY 3-36 increased 5-HT turnover in the LH and ameliorated the ppDIO-induced sleep disturbances, suggesting the therapeutic potential of this peptide. These findings provide new insights into how sleep-wake behavior is programmed during early life and how peripheral and central signals are integrated to coordinate sleep.SIGNIFICANCE STATEMENT Adult physiology and behavior are strongly influenced by dynamic reorganization of the brain during puberty. The present work shows that obesity during puberty leads to persistently dysregulated patterns of sleep and wakefulness by blunting serotonergic signaling in the lateral hypothalamus. It also shows that pharmacological mimicry of satiety with peptide YY3-36 can reverse this neurochemical imbalance and acutely restore sleep composition. These findings add insight into how innate behaviors such as feeding and sleep are integrated and suggest a novel mechanism through which diet-induced obesity during puberty imposes its long-lasting effects on sleep-wake behavior.


Assuntos
Região Hipotalâmica Lateral/metabolismo , Obesidade/complicações , Serotonina/metabolismo , Transtornos do Sono-Vigília/etiologia , Animais , Homeostase/fisiologia , Região Hipotalâmica Lateral/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeo YY/farmacologia , Transtornos do Sono-Vigília/metabolismo
10.
Expert Opin Pharmacother ; 19(2): 83-91, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29268035

RESUMO

BACKGROUND: This post-marketing surveillance examined the safety and efficacy of long-term teneligliptin therapy in Japanese patients. RESEARCH DESIGN AND METHODS: We report interim results (cut-off date: 28 June 2017) of a 3-year PMS undertaken in subjects with type 2 diabetes mellitus (T2DM). Survey items included demographics, treatments, adverse drug reactions (ADRs), and laboratory variables. A subgroup analysis was also performed across three age groups (<65 years; 65 to <75 years; ≥75 years). Main outcome measures were incidence of ADRs, laboratory variables, and change in glycated hemoglobin (HbA1c) from baseline over time. RESULTS: Of 11,677 patients registered, data from 10,532 patients (6,338 males/4,194 females) were analyzed for the safety analysis set; the median administration period was 731 days. Overall, ADRs and serious ADRs were reported in 364 (3.46%) and 91 patients (0.86%), respectively. The most common ADRs were all hypoglycemia (0.32%), constipation (0.27%), and hepatic function abnormal (0.24%). No change in mean body weight occurred, and a reduction in mean HbA1c was observed until 2 years. The safety and efficacy profiles did not differ markedly among the three age groups. CONCLUSIONS: These interim results show that teneligliptin was well tolerated and improved hyperglycemia in Japanese patients with T2DM in clinical practice.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Pirazóis/uso terapêutico , Tiazolidinas/uso terapêutico , Idoso , Glicemia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Constipação Intestinal/etiologia , Feminino , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemia/etiologia , Hipoglicemiantes/efeitos adversos , Japão , Masculino , Pessoa de Meia-Idade , Vigilância de Produtos Comercializados , Pirazóis/efeitos adversos , Inquéritos e Questionários , Tiazolidinas/efeitos adversos
11.
Sci Rep ; 7(1): 12816, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28993701

RESUMO

DJ-1 (also known as PARK7) has been identified as a causal gene for hereditary recessive Parkinson's disease (PD). Consequently, the full elucidation of DJ-1 function will help decipher the molecular mechanisms underlying PD pathogenesis. However, because various, and sometimes inconsistent, roles for DJ-1 have been reported, the molecular function of DJ-1 remains controversial. Recently, a number of papers have suggested that DJ-1 family proteins are involved in aldehyde detoxification. We found that DJ-1 indeed converts methylglyoxal (pyruvaldehyde)-adducted glutathione (GSH) to intact GSH and lactate. Based on evidence that DJ-1 functions in mitochondrial homeostasis, we focused on the possibility that DJ-1 protects co-enzyme A (CoA) and its precursor in the CoA synthetic pathway from aldehyde attack. Here, we show that intact CoA and ß-alanine, an intermediate in CoA synthesis, are recovered from methylglyoxal-adducts by recombinant DJ-1 purified from E. coli. In this process, methylglyoxal is converted to L-lactate rather than the D-lactate produced by a conventional glyoxalase. PD-related pathogenic mutations of DJ-1 (L10P, M26I, A104T, D149A, and L166P) impair or abolish detoxification activity, suggesting a pathological significance. We infer that a key to understanding the biological function of DJ-1 resides in its methylglyoxal-adduct hydrolase activity, which protects low-molecular thiols, including CoA, from aldehydes.


Assuntos
Aldeídos/metabolismo , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/metabolismo , Compostos de Sulfidrila/metabolismo , Acetilcisteína/farmacologia , Sequência de Aminoácidos , Coenzima A/metabolismo , Glutationa/metabolismo , Células HeLa , Humanos , Inativação Metabólica/efeitos dos fármacos , Ácido Láctico/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Proteína Desglicase DJ-1/química , Proteína Desglicase DJ-1/genética , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , beta-Alanina/metabolismo
12.
J Neurosci ; 37(48): 11688-11700, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29079688

RESUMO

A single nucleotide polymorphism substitution from glutamine (Gln, Q) to arginine (Arg, R) at codon 460 of the purinergic P2X7 receptor (P2X7R) has repeatedly been associated with mood disorders. The P2X7R-Gln460Arg variant per se is not compromised in its function. However, heterologous expression of P2X7R-Gln460Arg together with wild-type P2X7R has recently been demonstrated to impair receptor function. Here we show that this also applies to humanized mice coexpressing both human P2X7R variants. Primary hippocampal cells derived from heterozygous mice showed an attenuated calcium uptake upon agonist stimulation. While humanized mice were unaffected in their behavioral repertoire under basal housing conditions, mice that harbor both P2X7R variants showed alterations in their sleep quality resembling signs of a prodromal disease stage. Also healthy heterozygous human subjects showed mild changes in sleep parameters. These results indicate that heterozygosity for the wild-type P2X7R and its mood disorder-associated variant P2X7R-Gln460Arg represents a genetic risk factor, which is potentially able to convey susceptibility to mood disorders.SIGNIFICANCE STATEMENT Depression and bipolar disorder are the most common mood disorders. The P2X7 receptor (P2X7R) regulates many cellular functions. Its polymorphic variant Gln460Arg has repeatedly been associated with mood disorders. Genetically engineered mice, with human P2X7R, revealed that heterozygous mice (i.e., they coexpress the disease-associated Gln460Arg variant together with its normal version) have impaired receptor function and showed sleep disturbances. Human participants with the heterozygote genotype also had subtle alterations in their sleep profile. Our findings suggest that altered P2X7R function in heterozygote individuals disturbs sleep and might increase the risk for developing mood disorders.


Assuntos
Variação Genética/genética , Heterozigoto , Transtornos do Humor/genética , Receptores Purinérgicos P2X7/genética , Sono/genética , Animais , Arginina/genética , Células Cultivadas , Glutamina/genética , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
13.
Genes Cells ; 21(7): 772-88, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27270837

RESUMO

DJ-1 has been identified as a gene responsible for recessive familial Parkinson's disease (familial Parkinsonism), which is caused by a mutation in the PARK7 locus. Consistent with the inferred correlation between Parkinson's disease and mitochondrial impairment, mitochondrial localization of DJ-1 and its implied role in mitochondrial quality control have been reported. However, the mechanism by which DJ-1 affects mitochondrial function remains poorly defined, and the mitochondrial localization of DJ-1 is still controversial. Here, we show the mitochondrial matrix localization of various pathogenic and artificial DJ-1 mutants by multiple independent experimental approaches including cellular fractionation, proteinase K protection assays, and specific immunocytochemistry. Localization of various DJ-1 mutants to the matrix is dependent on the membrane potential and translocase activity in both the outer and the inner membranes. Nevertheless, DJ-1 possesses neither an amino-terminal alpha-helix nor a predictable matrix-targeting signal, and a post-translocation processing-derived molecular weight change is not observed. In fact, wild-type DJ-1 does not show any evidence of mitochondrial localization at all. Such a mode of matrix localization of DJ-1 is difficult to explain by conventional mechanisms and implies a unique matrix import mechanism for DJ-1 mutants.


Assuntos
Potencial da Membrana Mitocondrial/genética , Proteínas Mutantes/genética , Doença de Parkinson/genética , Proteína Desglicase DJ-1/genética , Humanos , Mitocôndrias/genética , Membranas Mitocondriais/química , Proteínas Mutantes/isolamento & purificação , Mutação , Doença de Parkinson/patologia , Proteína Desglicase DJ-1/química , Proteína Desglicase DJ-1/isolamento & purificação
14.
J Chem Inf Model ; 55(6): 1158-68, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26000780

RESUMO

The ongoing search for fast Li-ion conducting solid electrolytes has driven the deployment surge on density functional theory (DFT) computation and materials informatics for exploring novel chemistries before actual experimental testing. Existing structure prototypes can now be readily evaluated beforehand not only to map out trends on target properties or for candidate composition selection but also for gaining insights on structure-property relationships. Recently, the tavorite structure has been determined to be capable of a fast Li ion insertion rate for battery cathode applications. Taking this inspiration, we surveyed the LiMTO4F tavorite system (M(3+)-T(5+) and M(2+)-T(6+) pairs; M is nontransition metals) for solid electrolyte use, identifying promising compositions with enormously low Li migration energy (ME) and understanding how structure parameters affect or modulate ME. We employed a combination of DFT computation, variable interaction analysis, graph theory, and a neural network for building a crystal structure-based ME prediction model. Candidate compositions that were predicted include LiGaPO4F (0.25 eV), LiGdPO4F (0.30 eV), LiDyPO4F (0.30 eV), LiMgSO4F (0.21 eV), and LiMgSeO4F (0.11 eV). With chemical substitutions at M and T sites, competing effects among Li pathway bottleneck size, polyanion covalency, and local lattice distortion were determined to be crucial for controlling ME. A way to predict ME for multiple structure types within the neural network framework was also explored.


Assuntos
Informática/métodos , Lítio/química , Modelos Moleculares , Eletrólitos/química , Conformação Molecular , Redes Neurais de Computação , Teoria Quântica , Reprodutibilidade dos Testes
15.
Sleep ; 38(9): 1371-80, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25845695

RESUMO

STUDY OBJECTIVES: The CACNA1C gene encodes the alpha 1C (α1C) subunit of the Cav1.2 voltage-dependent L-type calcium channel (LTCC). Some of the other voltage-dependent calcium channels, e.g., P-/Q-type, Cav2.1; N-type, Cav2.2; E-/R-type, Cav2.3; and T-type, Cav3.3 have been implicated in sleep modulation. However, the contribution of LTCCs to sleep remains largely unknown. Based on recent genome-wide association studies, CACNA1C emerged as one of potential candidate genes associated with both sleep and psychiatric disorders. Indeed, most patients with mental illnesses have sleep problems and vice versa. DESIGN: To investigate an impact of Cav1.2 on sleep-wake behavior and electroencephalogram (EEG) activity, polysomnography was performed in heterozygous Cacna1c (HET) knockout mice and their wild-type (WT) littermates under baseline and challenging conditions (acute sleep deprivation and restraint stress). MEASUREMENTS AND RESULTS: HET mice displayed significantly lower EEG spectral power than WT mice across high frequency ranges (beta to gamma) during wake and rapid eye movement (REM) sleep. Although HET mice spent slightly more time asleep in the dark period, daily amounts of sleep did not differ between the two genotypes. However, recovery sleep after exposure to both types of challenging stress conditions differed markedly; HET mice exhibited reduced REM sleep recovery responses compared to WT mice. CONCLUSIONS: These results suggest the involvement of Cacna1c (Cav1.2) in fast electroencephalogram oscillations and REM sleep regulatory processes. Lower spectral gamma activity, slightly increased sleep demands, and altered REM sleep responses found in heterozygous Cacna1c knockout mice may rather resemble a sleep phenotype observed in schizophrenia patients.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Eletroencefalografia , Ritmo Gama/fisiologia , Sono REM/fisiologia , Animais , Canais de Cálcio Tipo L/genética , Heterozigoto , Masculino , Camundongos , Camundongos Knockout , Polissonografia , Restrição Física , Privação do Sono/fisiopatologia , Vigília/fisiologia
16.
J Cell Biol ; 209(1): 111-28, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25847540

RESUMO

PINK1 selectively recruits Parkin to depolarized mitochondria for quarantine and removal of damaged mitochondria via ubiquitylation. Dysfunction of this process predisposes development of familial recessive Parkinson's disease. Although various models for the recruitment process have been proposed, none of them adequately explain the accumulated data, and thus the molecular basis for PINK1 recruitment of Parkin remains to be fully elucidated. In this study, we show that a linear ubiquitin chain of phosphomimetic tetra-ubiquitin(S65D) recruits Parkin to energized mitochondria in the absence of PINK1, whereas a wild-type tetra-ubiquitin chain does not. Under more physiologically relevant conditions, a lysosomal phosphorylated polyubiquitin chain recruited phosphomimetic Parkin to the lysosome. A cellular ubiquitin replacement system confirmed that ubiquitin phosphorylation is indeed essential for Parkin translocation. Furthermore, physical interactions between phosphomimetic Parkin and phosphorylated polyubiquitin chain were detected by immunoprecipitation from cells and in vitro reconstitution using recombinant proteins. We thus propose that the phosphorylated ubiquitin chain functions as the genuine Parkin receptor for recruitment to depolarized mitochondria.


Assuntos
Poliubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Células HeLa , Humanos , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico
17.
J Cell Sci ; 128(5): 964-78, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25609704

RESUMO

Dysfunction of PTEN-induced putative kinase 1 (PINK1), a Ser/Thr kinase with an N-terminal mitochondrial-targeting sequence (MTS), causes familial recessive parkinsonism. Reduction of the mitochondrial membrane potential limits MTS-mediated matrix import and promotes PINK1 accumulation on the outer mitochondrial membrane (OMM) of depolarized mitochondria. PINK1 then undergoes autophosphorylation and phosphorylates ubiquitin and Parkin, a cytosolic ubiquitin ligase, for clearance of damaged mitochondria. The molecular basis for PINK1 localization on the OMM of depolarized mitochondria rather than release to the cytosol is poorly understood. Here, we disentangle the PINK1 localization mechanism using deletion mutants and a newly established constitutively active PINK1 mutant. Disruption of the MTS through N-terminal insertion of aspartic acid residues results in OMM localization of PINK1 in energized mitochondria. Unexpectedly, the MTS and putative transmembrane domain (TMD) are dispensable for OMM localization, whereas mitochondrial translocase Tom40 (also known as TOMM40) and an alternative mitochondrial localization signal that resides between the MTS and TMD are required. PINK1 utilizes a mitochondrial localization mechanism that is distinct from that of conventional MTS proteins and that presumably functions in conjunction with the Tom complex in OMM localization when the conventional N-terminal MTS is inhibited.


Assuntos
Potencial da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células HeLa , Humanos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Fosforilação/fisiologia , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases/genética
18.
J Neurosci Methods ; 235: 277-84, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25092499

RESUMO

BACKGROUND: Scoring of wake-sleep states by trained investigators is a time-consuming task in many sleep experiments. We aimed to validate SCOPRISM, a new open-source algorithm for sleep scoring based on automatic graphical clustering of epoch distribution. METHODS: We recorded sleep and blood pressure signals of 36 orexin-deficient, 7 leptin knock-out, and 43 wild-type control mice in the PRISM laboratory. Additional groups of mice (n=14) and rats (n=6) recorded in independent labs were used to validate the algorithm across laboratories. RESULTS: The overall accuracy, specificity and sensitivity values of SCOPRISM (97%, 95%, and 94%, respectively) on PRISM lab data were similar to those calculated between human scorers (98%, 98%, and 94%, respectively). Using SCOPRISM, we replicated the main sleep and sleep-dependent cardiovascular findings of our previous studies. Finally, the cross-laboratory analyses showed that the SCOPRISM algorithm performed well on mouse and rat data. COMPARISON WITH EXISTING METHODS: SCOPRISM performed similarly or even better than recently reported algorithms. SCOPRISM is a very simple algorithm, extensively (cross)validated and with the possibility to evaluate its efficacy following a quick and easy visual flow chart. CONCLUSIONS: We validated SCOPRISM, a new, automated and open-source algorithm for sleep scoring on a large population of mice, including different mutant strains and on subgroups of mice and rats recorded by independent labs. This algorithm should help accelerate basic research on sleep and integrative physiology in rodents.


Assuntos
Algoritmos , Reconhecimento Automatizado de Padrão/métodos , Polissonografia/métodos , Sono/fisiologia , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Internet , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Narcolepsia/fisiopatologia , Obesidade/fisiopatologia , Ratos Sprague-Dawley , Sensibilidade e Especificidade
19.
Nature ; 510(7503): 162-6, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24784582

RESUMO

PINK1 (PTEN induced putative kinase 1) and PARKIN (also known as PARK2) have been identified as the causal genes responsible for hereditary recessive early-onset Parkinsonism. PINK1 is a Ser/Thr kinase that specifically accumulates on depolarized mitochondria, whereas parkin is an E3 ubiquitin ligase that catalyses ubiquitin transfer to mitochondrial substrates. PINK1 acts as an upstream factor for parkin and is essential both for the activation of latent E3 parkin activity and for recruiting parkin onto depolarized mitochondria. Recently, mechanistic insights into mitochondrial quality control mediated by PINK1 and parkin have been revealed, and PINK1-dependent phosphorylation of parkin has been reported. However, the requirement of PINK1 for parkin activation was not bypassed by phosphomimetic parkin mutation, and how PINK1 accelerates the E3 activity of parkin on damaged mitochondria is still obscure. Here we report that ubiquitin is the genuine substrate of PINK1. PINK1 phosphorylated ubiquitin at Ser 65 both in vitro and in cells, and a Ser 65 phosphopeptide derived from endogenous ubiquitin was only detected in cells in the presence of PINK1 and following a decrease in mitochondrial membrane potential. Unexpectedly, phosphomimetic ubiquitin bypassed PINK1-dependent activation of a phosphomimetic parkin mutant in cells. Furthermore, phosphomimetic ubiquitin accelerates discharge of the thioester conjugate formed by UBCH7 (also known as UBE2L3) and ubiquitin (UBCH7∼ubiquitin) in the presence of parkin in vitro, indicating that it acts allosterically. The phosphorylation-dependent interaction between ubiquitin and parkin suggests that phosphorylated ubiquitin unlocks autoinhibition of the catalytic cysteine. Our results show that PINK1-dependent phosphorylation of both parkin and ubiquitin is sufficient for full activation of parkin E3 activity. These findings demonstrate that phosphorylated ubiquitin is a parkin activator.


Assuntos
Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Ativação Enzimática , Fibroblastos , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Mutação/genética , Doença de Parkinson , Fosforilação , Fosfosserina/metabolismo , Ubiquitina/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
20.
J Sleep Res ; 23(2): 176-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24354785

RESUMO

FK506-binding protein 51 (FKBP51) is a co-chaperone of the glucocorticoid receptor, functionally linked to its activity via an ultra-short negative feedback loop. Thus, FKBP51 plays an important regulatory role in the hypothalamic-pituitary-adrenocortical (HPA) axis necessary for stress adaptation and recovery. Previous investigations illustrated that HPA functionality is influenced by polymorphisms in the gene encoding FKBP51, which are associated with both increased protein levels and depressive episodes. Because FKBP51 is a key molecule in stress responses, we hypothesized that its deletion impacts sleep. To study FKBP51-involved changes in sleep, polysomnograms of FKBP51 knockout (KO) mice and wild-type (WT) littermates were compared at baseline and in the recovery phase after 6-h sleep deprivation (SD) and 1-h restraint stress (RS). Using another set of animals, the 24-h profiles of hippocampal free corticosterone levels were also determined. The most dominant effect of FKBP51 deletion appeared as increased nocturnal wake, where the bout length was significantly extended while non-rapid eye movement sleep (NREMS) and rapid eye movement sleep were rather suppressed. After both SD and RS, FKBP51KO mice exhibited less recovery or rebound sleep than WTs, although slow-wave activity during NREMS was higher in KOs, particularly after SD. Sleep compositions of KOs were nearly opposite to sleep profiles observed in human depression. This might result from lower levels of free corticosterone in FKBP51KO mice, confirming reduced HPA reactivity. The results indicate that an FKBP51 deletion yields a pro-resilience sleep phenotype. FKBP51 could therefore be a therapeutic target for stress-induced mood and sleep disorders.


Assuntos
Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Sono , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Corticosterona/sangue , Transtorno Depressivo/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Camundongos Knockout , Sistema Hipófise-Suprarrenal/metabolismo , Polimorfismo Genético , Polissonografia , Privação do Sono/sangue , Transtornos do Sono-Vigília/metabolismo , Transtornos do Sono-Vigília/fisiopatologia , Sono REM , Proteínas de Ligação a Tacrolimo/deficiência , Proteínas de Ligação a Tacrolimo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA