Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14227, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902311

RESUMO

Agricultural production assessments are crucial for formulating strategies for closing yield gaps and enhancing production efficiencies. While in situ crop yield measurements can provide valuable and accurate information, such approaches are costly and lack scalability for large-scale assessments. Therefore, crop modeling and remote sensing (RS) technologies are essential for assessing crop conditions and predicting yields at larger scales. In this study, we combined RS and a crop growth model to assess phenology, evapotranspiration (ET), and yield dynamics at grid and sub-county scales in Kenya. We synthesized RS information from the Food and Agriculture Organization (FAO) Water Productivity Open-access portal (WaPOR) to retrieve sowing date information for driving the model simulations. The findings showed that grid-scale management information and progressive crop growth could be accurately derived, reducing the model output uncertainties. Performance assessment of the modeled phenology yielded satisfactory accuracies at the sub-county scale during two representative seasons. The agreement between the simulated ET and yield was improved with the combined RS-crop model approach relative to the crop model only, demonstrating the value of additional large-scale RS information. The proposed approach supports crop yield estimation in data-scarce environments and provides valuable insights for agricultural resource management enabling countermeasures, especially when shortages are perceived in advance, thus enhancing agricultural production.


Assuntos
Produtos Agrícolas , Tecnologia de Sensoriamento Remoto , Zea mays , Quênia , Tecnologia de Sensoriamento Remoto/métodos , Zea mays/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produção Agrícola/métodos , Agricultura/métodos , Modelos Teóricos , Estações do Ano
2.
Heliyon ; 9(11): e22173, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38053865

RESUMO

Finding consensus in definitions of commonly-used terms and concepts is a key requirement to enable cooperations between interdisciplinary scientists and practitioners in inter- or transdisciplinary projects. In research on sustainable agriculture, the term 'landscape' is emphasised in particular, being used in studies that range from biogeochemical to socio-economic topics. However, it is normally used in a rather unspecific manner. Moreover, different disciplines assign deviating meanings to this term, which impedes interdisciplinary understanding and synthesis. To close this gap, a systematic literature review from relevant disciplines was conducted to identify a common understanding of the term "landscape". Three general categories of landscape conceptualizations were identified. In a small subset of studies, "landscape" is defined by area size or by natural or anthropogenic borders. The majority of reviewed papers, though, define landscapes as sets of relationships between various elements. Selection of respective elements differed widely depending on research objects. Based on these findings, a new definition of landscape is proposed, which can be operationalized by interdisciplinary researchers to define a common study object and which allows for sufficient flexibility depending on specific research questions. It also avoids over-emphasis on specific spatio-temporal relations at the "landscape scale", which may be context-dependent. Agricultural landscape research demands for study-specific definitions which should be meticulously provided in the future.

3.
MethodsX ; 11: 102282, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38098769

RESUMO

Agroforestry systems have received a significant attention in recent years and can be considered as a potential strategy in agricultural production to respond to worsening climatic conditions. The decision-making process for farmers to design and implement agroforestry systems is complex due to time-consuming processes of planting, growing and management of trees, as well as the long-term impacts on the field and its productivity. The shading of the arable land by trees is a core issue and should be reduced through a north-south orientation of the tree rows. However, this orientation is often in conflict with other criteria. In order to consider future shading from different tree row orientations into the design process, the modelling tool "ShadOT" was developed. This tool can simulate tree growth and analyses spatial shading over variable time periods by using only a limited number of parameters. This tool was programmed exclusively with open source software and can therefore be easily extended. It offers an ideal platform for testing different agroforestry designs due to its simple approach and minimal parameterization. Two different designs (north-south and west-east orientation) were tested for a field and differences in the temporal and spatial distribution of shaded areas are presented.•Modelling tool for tree growth and shading effects is presented.•The tool is written in Python programming language, uses only open-source software and requires a limited number of inputs.•Identification of spatial-temporal shading patterns of different alley cropping scenarios.

4.
Heliyon ; 9(11): e21215, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37964818

RESUMO

Transformation of agriculture to realise sustainable site-specific management requires comprehensive scientific support based on field experiments to capture the complex agroecological process, incite new policies and integrate them into farmers' decisions. However, current experimental approaches are limited in addressing the wide spectrum of sustainable agroecosystem and landscape characteristics and in supplying stakeholders with suitable solutions and measures. This review identifies major constraints in current field experimentation, such as a lack of consideration of multiple processes and scales and a limited ability to address interactions between them. It emphasizes the urgent need to establish a new category of landscape experimentation that empowers agricultural research on sustainable agricultural systems, aiming at elucidating interactions among various landscape structures and functions, encompassing both natural and anthropogenic features. It extensively discusses the key characteristics of landscape experiments and major opportunities to include them in the agricultural research agenda. In particular, simultaneously considering multiple factors, and thus processes at different scales and possible synergies or antagonisms among them would boost our understanding of heterogeneous agricultural landscapes. We also highlight that though various studies identified promising approaches with respect to experimental design and data analysis, further developments are still required to build a fully functional and integrated framework for landscape experimentation in agricultural settings.

5.
Environ Sci Ecotechnol ; 16: 100274, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37206315

RESUMO

Multifunctional and diversified agriculture can address diverging pressures and demands by simultaneously enhancing productivity, biodiversity, and the provision of ecosystem services. The use of digital technologies can support this by designing and managing resource-efficient and context-specific agricultural systems. We present the Digital Agricultural Knowledge and Information System (DAKIS) to demonstrate an approach that employs digital technologies to enable decision-making towards diversified and sustainable agriculture. To develop the DAKIS, we specified, together with stakeholders, requirements for a knowledge-based decision-support tool and reviewed the literature to identify limitations in the current generation of tools. The results of the review point towards recurring challenges regarding the consideration of ecosystem services and biodiversity, the capacity to foster communication and cooperation between farmers and other actors, and the ability to link multiple spatiotemporal scales and sustainability levels. To overcome these challenges, the DAKIS provides a digital platform to support farmers' decision-making on land use and management via an integrative spatiotemporally explicit approach that analyses a wide range of data from various sources. The approach integrates remote and in situ sensors, artificial intelligence, modelling, stakeholder-stated demand for biodiversity and ecosystem services, and participatory sustainability impact assessment to address the diverse drivers affecting agricultural land use and management design, including natural and agronomic factors, economic and policy considerations, and socio-cultural preferences and settings. Ultimately, the DAKIS embeds the consideration of ecosystem services, biodiversity, and sustainability into farmers' decision-making and enables learning and progress towards site-adapted small-scale multifunctional and diversified agriculture while simultaneously supporting farmers' objectives and societal demands.

6.
Ecol Evol ; 12(3): e8719, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35356570

RESUMO

While agricultural intensification and expansion are major factors driving loss and degradation of natural habitat and species decline, some wildlife species also benefit from agriculturally managed habitats. This may lead to high population densities with impacts on both human livelihoods and wildlife conservation. Cranes are a group of 15 species worldwide, affected both negatively and positively by agricultural practices. While eleven species face critical population declines, numbers of common cranes (Grus grus) and sandhill cranes (Grus canadensis) have increased drastically in the last 40 years. Their increase is associated with higher incidences of crane foraging on agricultural crops, causing financial losses to farmers. Our aim was to synthesize scientific knowledge on the bilateral effects of land use change and crane populations. We conducted a systematic literature review of peer-reviewed publications on agriculture-crane interactions (n = 135) and on the importance of agricultural crops in the diet of cranes (n = 81). Agricultural crops constitute a considerable part of the diet of all crane species (average of 37%, most frequently maize (Zea mays L.) and wheat (Triticum aestivum L.)). Crop damage was identified in only 10% of all agriculture-crane interactions, although one-third of interactions included cranes foraging on cropland. Using a conceptual framework analysis, we identified two major pathways in agriculture-crane interactions: (1) habitat loss with negative effects on crane species dependent on specific habitats, and (2) expanding agricultural habitats with superabundant food availability beneficial for opportunistic crane species. The degree to which crane species can adapt to agricultural land use changes may be an important factor explaining their population response. We conclude that multi-objective management needs to combine land sparing and land sharing strategies at landscape scale. To support viable crane populations while guaranteeing sustainable agricultural production, it is necessary to include the perspectives of diverse stakeholders and streamline conservation initiatives and agricultural policy accordingly.

7.
Plants (Basel) ; 11(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35161404

RESUMO

Numerous reports confirm the positive effect of biochar application on soil properties and plant development. However, the interaction between root-associated beneficial microbes and different types of biochar is not well understood. The objective of this study was to evaluate the plant growth of lettuce after the application of three types of biochar in loamy, sandy soil individually and in combination with plant-beneficial microbes. Furthermore, total microbial activity in rhizosphere soil of lettuce was measured by means of fluorescein diacetate (FDA) hydrolase and enzyme activities linked to carbon, nitrogen, and phosphorus cycling. We used three types of biochar: (i) pyrolysis char from cherry wood (CWBC), (ii) pyrolysis char from wood (WBC), and (iii) pyrolysis char from maize (MBC) at 2% concentration. Our results showed that pyrolysis biochars positively affected plant interaction with microbial inoculants. Plant dry biomass grown on soil amended with MBC in combination with Klebsiella sp. BS13 and Klebsiella sp. BS13 + Talaromyces purpureogenus BS16aPP inoculants was significantly increased by 5.8% and 18%, respectively, compared to the control plants. Comprehensively, interaction analysis showed that the biochar effect on soil enzyme activities involved in N and P cycling depends on the type of microbial inoculant. Microbial strains exhibited plant growth-promoting traits, including the production of indole 3-acetic-acid and hydrogen cyanide and phosphate-solubilizing ability. The effect of microbial inoculant also depends on the biochar type. In summary, these findings provide new insights into the understanding of the interactions between biochar and microbial inoculants, which may affect lettuce growth and development.

8.
PLoS One ; 17(1): e0263554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35100307

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0253755.].

9.
Plants (Basel) ; 10(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34685945

RESUMO

Licorice (Glycyrrhiza uralensis Fisch.) is a salt and drought tolerant legume suitable for rehabilitating abandoned saline lands, especially in dry arid regions. We hypothesized that soil amended with maize-derived biochar might alleviate salt stress in licorice by improving its growth, nutrient acquisition, and root system adaptation. Experiments were designed to determine the effect of different biochar concentrations on licorice growth parameters, acquisition of C (carbon), nitrogen (N), and phosphorus (P) and on soil enzyme activities under saline and non-saline soil conditions. Pyrolysis char from maize (600 °C) was used at concentrations of 2% (B2), 4% (B4), and 6% (B6) for pot experiments. After 40 days, biochar improved the shoot and root biomass of licorice by 80 and 41% under saline soil conditions. However, B4 and B6 did not have a significant effect on shoot growth. Furthermore, increased nodule numbers of licorice grown at B4 amendment were observed under both non-saline and saline conditions. The root architectural traits, such as root length, surface area, project area, root volume, and nodulation traits, also significantly increased by biochar application at both B2 and B4. The concentrations of N and K in plant tissue increased under B2 and B4 amendments compared to the plants grown without biochar application. Moreover, the soil under saline conditions amended with biochar showed a positive effect on the activities of soil fluorescein diacetate hydrolase, proteases, and acid phosphomonoesterases. Overall, this study demonstrated the beneficial effects of maize-derived biochar on growth and nutrient uptake of licorice under saline soil conditions by improving nodule formation and root architecture, as well as soil enzyme activity.

10.
AIMS Microbiol ; 7(3): 336-353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708176

RESUMO

Endophytes colonizing plant tissue play an essential role in plant growth, development, stress tolerance and plant protection from soil-borne diseases. In this study, we report the diversity of cultivable endophytic bacteria associated with marigold (Calendula officinalis L.) by using 16S rRNA gene analysis and their plant beneficial properties. A total of 42 bacterial isolates were obtained from plant tissues of marigold. They belonged to the genera Pantoea, Enterobacter, Pseudomonas, Achromobacter, Xanthomonas, Rathayibacter, Agrobacterium, Pseudoxanthomonas, and Beijerinckia. Among the bacterial strains, P. kilonensis FRT12, and P. rhizosphaerae FST5 showed moderate or vigorous inhibition against three tested plant pathogenic fungi, F. culmorum, F. solani and R. solani. They also demonstrated the capability to produce hydrolytic enzymes and indole-3-acetic acid (IAA). Five out of 16 isolates significantly stimulated shoot and root growth of marigold in a pot experiment. The present study reveals that more than half of the bacterial isolates associated with marigold (C. officinalis L.) provided antifungal activity against one or more plant pathogenic fungi. Our findings suggest that medicinal plants with antimicrobial activity could be a source for selecting microbes with antagonistic activity against fungal plant pathogens or with plant growth stimulating potential. These isolates might be considered as promising candidates for the improvement of plant health.

11.
Front Plant Sci ; 12: 638452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149745

RESUMO

To support the adaption of soybean [Glycine max (L) Merrill] cultivation across Central Europe, the availability of compatible soybean nodulating Bradyrhizobia (SNB) is essential. Little is known about the symbiotic potential of indigenous SNB in Central Europe and the interaction with an SNB inoculum from commercial products. The objective of this study was to quantify the capacity of indigenous and inoculated SNB strains on the symbiotic performance of soybean in a pot experiment, using soils with and without soybean history. Under controlled conditions in a growth chamber, the study focused on two main factors: a soybean cropping interval (time since the last soybean cultivation; SCI) and inoculation with commercial Bradyrhizobia strains. Comparing the two types of soil, without soybean history and with 1-4 years SCI, we found out that plants grown in soil with soybean history and without inoculation had significantly more root nodules and higher nitrogen content in the plant tissue. These parameters, along with the leghemoglobin content, were found to be a variable among soils with 1-4 years SCI and did not show a trend over the years. Inoculation in soil without soybean history showed a significant increase in a nodulation rate, leghemoglobin content, and soybean tissue nitrogen concentration. The study found that response to inoculation varied significantly as per locations in soil with previous soybean cultivation history. An inoculated soybean grown on loamy sandy soils from the location Müncheberg had significantly more nodules as well as higher green tissue nitrogen concentration compared with non-inoculated plants. No significant improvement in a nodulation rate and tissue nitrogen concentration was observed for an inoculated soybean grown on loamy sandy soils from the location Fehrow. These results suggest that introduced SNB strains remained viable in the soil and were still symbiotically competent for up to 4 years after soybean cultivation. However, the symbiotic performance of the SNB remaining in the soils was not sufficient in all cases and makes inoculation with commercial products necessary. The SNB strains found in the soil of Central Europe could also be promising candidates for the development of inoculants and already represent a contribution to the successful cultivation of soybeans in Central Europe.

12.
PLoS One ; 16(6): e0253755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191848

RESUMO

The study is focused on impact of manure application, rice varieties and water management on greenhouse gas (GHG) emissions from paddy rice soil in pot experiment. The objectives of this study were a) to assess the effect of different types of manure amendments and rice varieties on greenhouse gas emissions and b) to determine the optimum manure application rate to increase rice yield while mitigating GHG emissions under alternate wetting and drying irrigation in paddy rice production. The first pot experiment was conducted at the Department of Agronomy, Yezin Agricultural University, Myanmar, in the wet season from June to October 2016. Two different organic manures (compost and cow dung) and control (no manure), and two rice varieties; Manawthukha (135 days) and IR-50 (115 days), were tested. The results showed that cumulative CH4 emission from Manawthukha (1.084 g CH4 kg-1 soil) was significantly higher than that from IR-50 (0.683 g CH4 kg-1 soil) (P<0.0046) with yield increase (P<0.0164) because of the longer growth duration of the former. In contrast, higher cumulative nitrous oxide emissions were found for IR-50 (2.644 mg N2O kg-1 soil) than for Manawthukha (2.585 mg N2O kg-1 soil). However, IR-50 showed less global warming potential (GWP) than Manawthukha (P<0.0050). Although not significant, the numerically lowest CH4 and N2O emissions were observed in the cow dung manure treatment (0.808 g CH4 kg-1 soil, 2.135 mg N2O kg-1 soil) compared to those of the control and compost. To determine the effect of water management and organic manures on greenhouse gas emissions, second pot experiments were conducted in Madaya township during the dry and wet seasons from February to October 2017. Two water management practices {continuous flooding (CF) and alternate wetting and drying (AWD)} and four cow dung manure rates {(1) 0 (2) 2.5 t ha-1 (3) 5 t ha-1 (4) 7.5 t ha-1} were tested. The different cow dung manure rates did not significantly affect grain yield or greenhouse gas emissions in this experiment. Across the manure treatments, AWD irrigation significantly reduced CH4 emissions by 70% during the dry season and 66% during the wet season. Although a relative increase in N2O emissions under AWD was observed in both rice seasons, the global warming potential was significantly reduced in AWD compared to CF in both seasons (P<0.0002, P<0.0000) according to reduced emission in CH4. Therefore, AWD is the effective mitigation practice for reducing GWP without compromising rice yield while manure amendment had no significant effect on GHG emission from paddy rice field. Besides, AWD saved water about 10% in dry season and 19% in wet season.


Assuntos
Irrigação Agrícola/métodos , Produção Agrícola/métodos , Gases de Efeito Estufa/efeitos adversos , Esterco , Oryza/crescimento & desenvolvimento , Irrigação Agrícola/estatística & dados numéricos , Produção Agrícola/estatística & dados numéricos , Aquecimento Global , Mianmar , Óxido Nitroso/metabolismo , Oryza/metabolismo , Estações do Ano
14.
PeerJ ; 9: e10615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604168

RESUMO

While intercropping is known to have positive effects on crop productivity, it is unclear whether the effects of mixing species start at the early plant stage, that is, during germination. We tested whether the germination of two legume species, alsike clover and black medic, characterized by a contrasting response to water availability and temperature is affected by mixing. We set up four experiments in each of which we compared a 1:1 mixture against the two monocultures, and combined this with various other experimental factors. These additional factors were (i) varied seed densities (50%, 100% and 150% of a reference density) in two field trials in 2016 and 2017, (ii) varied seed densities (high and low) and water availability (six levels, between 25% and 100% of water holding capacity (WHC)) in a greenhouse pot trial, (iii) varied seed spacing in a climate chamber, and (iv) varied temperatures (12 °C, 20 °C and 28 °C) and water availability (four levels between 25% and 100% of WHC) in a climate chamber. Across all experiments, the absolute mixture effects (AME) on germination ranged between -9% and +11%, with a median of +1.3%. Within experiments, significant mixture effects were observed, but the direction of these effects was inconsistent. In the field, AME on germination was significantly negative at some of the tested seed densities. A positive AME was observed in the climate chamber at 12 °C, and the mean AME decreased with increasing temperature. Higher density was associated with decreased germination in the field, indicating negative interaction through competition or allelopathy, among seedlings. Our findings indicate that interaction among seeds in species mixtures may be ongoing during germination, but that the direction of the mixture effect is affected by complex interactions with abiotic and biotic factors.

15.
Front Plant Sci ; 12: 707080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095938

RESUMO

Commercial inoculants are often used to inoculate field-grown soybean in Europe. However, nodulation efficiencies in these areas are often low. To enhance biological nitrogen (N) fixation and increase domestic legume production, indigenous strains that are adapted to local conditions could be used to develop more effective inoculants. The objective of this study was to assess the ability of locally isolated Bradyrhizobium strains to enhance soybean productivity in different growing conditions of Northeast Germany. Three indigenous Bradyrhizobium isolates (GMF14, GMM36, and GEM96) were tested in combination with different soybean cultivars of different maturity groups and quality characteristics in one field trial and two greenhouse studies. The results showed a highly significant strain × cultivar interactions on nodulation response. Independent of the Bradyrhizobium strain, inoculated plants in the greenhouse showed higher nodulation, which corresponded with an increased N uptake than that in field conditions. There were significantly higher nodule numbers and nodule dry weights following GMF14 and GMM36 inoculation in well-watered soil, but only minor differences under drought conditions. Inoculation of the soybean cultivar Merlin with the strain GEM96 enhanced nodulation but did not correspond to an increased grain yield under field conditions. USDA110 was consistent in improving the grain yield of soybean cultivars Sultana and Siroca. On the other hand, GMM36 inoculation to Sultana and GEM96 inoculation to Siroca resulted in similar yields. Our results demonstrate that inoculation of locally adapted soybean cultivars with the indigenous isolates improves nodulation and yield attributes. Thus, to attain optimal symbiotic performance, the strains need to be matched with specific cultivars.

16.
Plants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009054

RESUMO

The diversity of salt-tolerant cultivable endophytic bacteria associated with the halophyte New Zealand spinach (Tetragonia tetragonioides (Pall.) Kuntze) was studied, and their plant beneficial properties were evaluated. The bacteria isolated from leaves and roots belonged to Agrobacterium, Stenotrophomonas, Bacillus, Brevibacterium, Pseudomonas, Streptomyces, Pseudarthrobacter, Raoultella, Curtobacterium, and Pantoea. Isolates exhibited plant growth-promoting traits, including the production of a phytohormone (indole 3-acetic-acid), cell wall degrading enzymes, and hydrogen cyanide production. Furthermore, antifungal activity against the plant pathogenic fungi Fusarium solani, F. oxysporum, and Verticillium dahliae was detected. Ten out of twenty bacterial isolates were able to synthesize ACC deaminase, which plays a vital role in decreasing ethylene levels in plants. Regardless of the origin of isolated bacteria, root or leaf tissue, they stimulated plant root and shoot growth under 200 mM NaCl conditions. Our study suggests that halophytes such as New Zealand spinach are a promising source for isolating halotolerant plant-beneficial bacteria, which can be considered as potentially efficient biofertilizers in the bioremediation of salt-affected soils.

17.
Microorganisms ; 8(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126699

RESUMO

Hydrochar is rich in nutrients and may provide a favorable habitat or shelter for bacterial proliferation and survival. Therefore, in this study, we investigate the efficiency of a hydrochar-based rhizobial inoculant (Bradyrhizobium japonicum) on the symbiotic performance of soybean under both greenhouse and field conditions. There were positive and significant effects of hydrochar-based inoculation on the root and shoot growth of soybean as compared to uninoculated plants grown under irrigated and drought conditions. The drought stress significantly inhibited the symbiotic performance of rhizobia with soybean. Soybean inoculated with hydrochar-based B. japonicum produced twofold more nodules under drought stress conditions as compared to plants inoculated with a commercial preparation/inoculant carrier B. japonicum (HISTICK). The N concentration of inoculated plants with hydrochar-based B. japonicum was by 31% higher than that of un-inoculated plants grown in pots and by 22% for HISTICK. Furthermore, the soybean treated with hydrochar-based B. japonicum showed higher grain yield of 29% under irrigated conditions and 40% higher under rainfed condition compared to un-inoculated plants. In conclusion, the obtained results proved the potential of hydrochar-based B. japonicum inoculant for soybean in terms of increased symbiotic performance and agronomic traits, especially under rainfed conditions.

18.
Front Plant Sci ; 11: 721, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582251

RESUMO

In the face of increasingly frequent droughts threatening crop performance, ecological theory suggests that higher species diversity may help buffering productivity by making systems more resistant through resource complementarity and more resilient through higher response diversity. However, empirical evidence for these diversity effects under drought stress has remained patchy. In two pot experiments, we explored whether mixing two legume species with a contrasting response to water availability, alsike clover (AC) and black medic (BM), promotes resistance to cumulative drought stress, and resilience of aboveground crop biomass to a transient drought event. The mixture was more productive than the average of the sole crops, and this mixture effect was higher in the non-stressed than in the drought-stressed plants. However, with six levels of constant drought intensities, the mixture effect was not consistently affected by drought level. Response diversity was evident as asynchrony of growth in the two species after the drought event, with BM re-growing faster than AC. Significant resilience to drought was observed in sole AC, i.e., without response diversity. Resilience was larger in AC than in BM and increased from 44 to 72 days after sowing (DAS). The mixture was more resilient than the average resilience of the sole crops at 72 DAS, but it was never more resilient than AC, indicating that resilience is promoted by, but not dependent on response diversity. We conclude that crop diversity may contribute to drought resilience through growth asynchrony, but that species identity plays a crucial role in making systems more drought-resilient.

19.
Microorganisms ; 8(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244470

RESUMO

The effects of biochar on plant growth vary depending on the applied biochar type, study site environmental conditions, microbial species, and plant-microbial interactions. The objectives of the present study were therefore to assess 1) the response of growth parameters of lupin and root disease incidence to the application of three biochar types in a loamy sandy soil, and 2) the role of endophytic bacteria in biological control of root rot disease incidence in lupin after the amendment of soil with different biochar types. As biochar types we tested (i) hydrochar (HTC) from maize silage, (ii) pyrolysis char from maize (MBC), and (iii) pyrolysis char from wood (WBC) at three different concentrations (1%, 2%, and 3% of char as soil amendments). There were no significant effects in lupin shoot and root growth in soils amended with WBC at any of the concentrations. MBC did not affect plant growth except for root dry weight at 2% MBC. HTC char at 2% concentration, significantly increased the root dry weight of lupin by 54-75%, and shoot dry weight by 21-25%. Lupin plants grown in soil amended with 2% and 3% WBC and MBC chars showed 40-50% and 10-20% disease symptoms, respectively. Plants grown in soil without biochar and with HTC char were healthy, and no disease incidence occurred. Pseudomonas putida L2 and Stenotrophomonas pavanii L8 isolates demonstrated a disease reduction compared to un-inoculated plants under MBC and WBC amended soil that was infested with Fusarium solani.

20.
Microbes Environ ; 35(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-31996499

RESUMO

In central Europe, soybean cultivation is gaining increasing importance to reduce protein imports from overseas and make cropping systems more sustainable. In the field, despite the inoculation of soybean with commercial rhizobia, its nodulation is low. In many parts of Europe, limited information is currently available on the genetic diversity of rhizobia and, thus, biological resources for selecting high nitrogen-fixing rhizobia are inadequate. These resources are urgently needed to improve soybean production in central Europe. The objective of the present study was to identify strains that have the potential to increase nitrogen fixation by and the yield of soybean in German soils. We isolated and characterized 77 soybean rhizobia from 18 different sampling sites. Based on a multilocus sequence analysis (MLSA), 71% of isolates were identified as Bradyrhizobium and 29% as Rhizobium. A comparative analysis of the nodD and nifH genes showed no significant differences, which indicated that the soybean rhizobia symbiotic genes in the present study belong to only one type. One isolate, GMF14 which was tolerant of a low temperature (4°C), exhibited higher nitrogen fixation in root nodules and a greater plant biomass than USDA 110 under cold conditions. These results strongly suggest that some indigenous rhizobia enhance biological nitrogen fixation and soybean yield due to their adaption to local conditions.


Assuntos
Bradyrhizobium/fisiologia , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Rhizobium/fisiologia , Microbiologia do Solo , Agricultura , Proteínas de Bactérias/genética , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Temperatura Baixa , Alemanha , Tipagem de Sequências Multilocus , Fixação de Nitrogênio/genética , Oxirredutases/genética , Filogenia , Rhizobium/classificação , Rhizobium/genética , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Estresse Fisiológico , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA