Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17882, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284144

RESUMO

The mining of genomes from non-cultivated microorganisms using metagenomics is a powerful tool to discover novel proteins and other valuable biomolecules. However, function-based metagenome searches are often limited by the time-consuming expression of the active proteins in various heterologous host systems. We here report the initial characterization of novel single-subunit bacteriophage RNA polymerase, EM1 RNAP, identified from a metagenome data set obtained from an elephant dung microbiome. EM1 RNAP and its promoter sequence are distantly related to T7 RNA polymerase. Using EM1 RNAP and a translation-competent Escherichia coli extract, we have developed an efficient medium-throughput pipeline and protocol allowing the expression of metagenome-derived genes and the production of proteins in cell-free system is sufficient for the initial testing of the predicted activities. Here, we have successfully identified and verified 12 enzymes acting on bis(2-hydroxyethyl) terephthalate (BHET) in a completely clone-free approach and proposed an in vitro high-throughput metagenomic screening method.


Assuntos
Metagenoma , Proteínas do Complexo da Replicase Viral , Sistema Livre de Células/metabolismo , RNA Viral/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Metagenômica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Biotechnol Bioeng ; 114(12): 2739-2752, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28842992

RESUMO

The exciting promises of functional metagenomics for the efficient discovery of novel biomolecules from nature are often hindered by factors associated with expression hosts. Aiming to shift functional metagenomics to a host independent innovative system, we here report on the cloning, heterologous expression, and reconstitution of an RNA polymerase (RNAP) from the thermophilic Geobacillus sp. GHH01 and in vitro transcription thereafter. The five genes coding for RNAP subunits, a house keeping sigma factor and two transcription elongation factors were cloned and over expressed as His6 -tagged and/ or tag-free proteins. Purified subunits were reconstituted into a functional polymerase through either the classical method of denaturation and subsequent renaturation or through a new resource and time efficient thermo-reconstitution method which takes advantage of the subunits' temperature stability. Additionally, all subunits were cloned into a single vector system for a co-expression and in vivo reconstitution to the RNAP core enzyme. Both the core and holoenzyme form of the RNAP exhibited a robust transcription activity and were stable up to a temperature of 55°C close to their fullest activity. The Geobacillus RNAP showed a remarkable in vitro transcription profile recognizing DNA template sequences of diverse bacteria and archaea as well as metagenomic samples. Coupled with a subsequent in vitro translation step, this recombinant transcription system could allow a new, clone-free, and functional metagenomic screening approach.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Melhoramento Genético/métodos , Geobacillus/genética , Metagenoma/genética , RNA/biossíntese , Proteínas Recombinantes/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/genética , RNA/genética , Proteínas Recombinantes/metabolismo
3.
Chembiochem ; 18(15): 1518-1522, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28421660

RESUMO

The efficient synthesis of pure d-glycerate-2-phosphate is of great interest due to its importance as an enzyme substrate and metabolite. Therefore, we investigated a straightforward one-step biocatalytic phosphorylation of glyceric acid. Glycerate-2-kinase from Thermotoga maritima was expressed in Escherichia coli, allowing easy purification. The selective glycerate-2-kinase-catalyzed phosphorylation was followed by 31 P NMR and showed excellent enantioselectivity towards phosphorylation of the d-enantiomer of glyceric acid. This straightforward phosphorylation reaction and subsequent product isolation enabled the preparation of enantiomerically pure d-glycerate 2-phosphate. This phosphorylation reaction, using recombinant glycerate-2-kinase, yielded d-glycerate 2-phosphate in fewer reaction steps and with higher purity than chemical routes.


Assuntos
Ácidos Glicéricos/síntese química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Proteínas Recombinantes de Fusão/química , Biocatálise , Endopeptidases/química , Escherichia coli/genética , Ácidos Glicéricos/química , Cinética , Espectroscopia de Ressonância Magnética , Proteínas Ligantes de Maltose/genética , Radioisótopos de Fósforo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Recombinantes de Fusão/genética , Estereoisomerismo , Thermotoga maritima/enzimologia
4.
Biotechnol J ; 12(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27992107

RESUMO

Enantiopure L-glyceraldehyde-3-phosphate (L-GAP) is a useful building block in natural biological and synthetic processes. A biocatalytic process using glycerol kinase from Cellulomonas sp. (EC 2.7.1.30) catalyzed phosphorylation of L-glyceraldehyde (L-GA) by ATP is used for the synthesis of L-GAP. L-GAP has a half-life of 6.86 h under reaction conditions. The activity of this enzyme depends on the Mg2+ to ATP molar ratio showing maximum activity at the optimum molar ratio of 0.7. A kinetic model is developed and validated showing a 2D correlation of 99.9% between experimental and numerical data matrices. The enzyme exhibits inhibition by ADP, AMP, methylglyoxal and Ca2+ , but not by L-GAP and inorganic orthophosphate. Moreover, equal amount of Ca2+ exerts a different degree of inhibition relative to the activity without the addition of Ca2+ depending on the Mg2+ to ATP molar ratio. If the Mg2+ to ATP molar ratio is set to be at the optimum value or less, inorganic hexametaphosphate (PPi6) suppresses the enzyme activity; otherwise PPi6 enhances the enzyme activity. Based on reaction engineering parameters such as conversion, selectivity and specific productivity, evaluation of different reactor types reveals that batchwise operation via stirred-tank reactor is the most efficient process for the synthesis of L-GAP.


Assuntos
Bioengenharia , Gliceraldeído 3-Fosfato/biossíntese , Glicerol Quinase/metabolismo , Cellulomonas/enzimologia , Escherichia coli/enzimologia , Meia-Vida , Fosfatos/metabolismo , Reprodutibilidade dos Testes , Streptomyces/enzimologia , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA