Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 17478, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767903

RESUMO

Artificially generated radiofrequency-electromagnetic energy (RF-EME) is now ubiquitous in our environment owing to the utilization of mobile phone and Wi-Fi based communication devices. While several studies have revealed that RF-EME is capable of eliciting biological stress, particularly in the context of the male reproductive system, the mechanistic basis of this biophysical interaction remains largely unresolved. To extend these studies, here we exposed unrestrained male mice to RF-EME generated via a dedicated waveguide (905 MHz, 2.2 W/kg) for 12 h per day for a period of 1, 3 or 5 weeks. The testes of exposed mice exhibited no evidence of gross histological change or elevated stress, irrespective of the RF-EME exposure regimen. By contrast, 5 weeks of RF-EME exposure adversely impacted the vitality and motility profiles of mature epididymal spermatozoa. These spermatozoa also experienced increased mitochondrial generation of reactive oxygen species after 1 week of exposure, with elevated DNA oxidation and fragmentation across all exposure periods. Notwithstanding these lesions, RF-EME exposure did not impair the fertilization competence of spermatozoa nor their ability to support early embryonic development. This study supports the utility of male germ cells as sensitive tools with which to assess the biological impacts of whole-body RF-EME exposure.


Assuntos
Dano ao DNA , Estresse Oxidativo , Espermatozoides/efeitos da radiação , Animais , Radiação Eletromagnética , Masculino , Camundongos , Modelos Animais , Ondas de Rádio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Motilidade dos Espermatozoides/efeitos da radiação , Espermatozoides/química , Fatores de Tempo
2.
Front Public Health ; 6: 270, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30298125

RESUMO

As the use of mobile phone devices is now highly prevalent, many studies have sought to evaluate the effects of the radiofrequency-electromagnetic radiation (RF-EMR) on both human health and biology. While several such studies have shown RF-EMR is capable of inducing cellular stress, the physicobiological origin of this stress remains largely unresolved. To explore the effect of RF-EMR on the male reproductive system, we exposed cultured mouse spermatogonial GC1 and spermatocyte GC2 cell lines, as well as cauda epididymal spermatozoa to a waveguide generating continuous wave RF-EMR (1.8 GHz, 0.15 and 1.5 W/kg). This study demonstrated that a 4 h exposure is capable of inducing the generation of mitochondrial reactive oxygen species (ROS) in populations of GC1 (7 vs. 18%; p < 0.001) and GC2 cells (11.5 vs. 16 %; p < 0.01), identifying Complex III of the electron transport chain (ETC) as the potential source of electrons producing ROS. Assessing the generation of ROS in the presence of an antioxidant, penicillamine, as well as measuring lipid peroxidation via 4-hydroxynonenal levels, indicated that the elevated incidence of ROS generation observed under our exposure conditions did not necessarily induce an overt cellular oxidative stress response. However, exposure to RF-EMR at 0.15 W/kg for 3 h did induce significant DNA fragmentation in spermatozoa (that was no longer significant after 4 h), assessed by the alkaline comet assay (p < 0.05). Furthermore, this fragmentation was accompanied by an induction of oxidative DNA damage in the form of 8-hydroxy-2'-deoxyguanosine, which was significant (p < 0.05) after spermatozoa were exposed to RF-EMR for 4 h. At this exposure time point, a decline in sperm motility (p < 0.05) was also observed. This study contributes new evidence toward elucidating a mechanism to account for the effects of RF-EMR on biological systems, proposing Complex III of the mitochondrial ETC as the key target of this radiation.

3.
Anal Chem ; 89(11): 6224-6231, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28485963

RESUMO

Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. We demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar+ and Ga+ sputtering. The useful yield for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.

4.
Artigo em Inglês | MEDLINE | ID: mdl-20530842

RESUMO

There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.

5.
PLoS One ; 4(7): e6446, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19649291

RESUMO

BACKGROUND: In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro. PRINCIPAL FINDINGS: Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR) tuned to 1.8 GHz and covering a range of specific absorption rates (SAR) from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (P<0.001). Furthermore, we also observed highly significant relationships between SAR, the oxidative DNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMR exposure. CONCLUSIONS: RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications for the safety of extensive mobile phone use by males of reproductive age, potentially affecting both their fertility and the health and wellbeing of their offspring.


Assuntos
Telefone Celular , Dano ao DNA , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/efeitos da radiação , Fragmentação do DNA/efeitos da radiação , Campos Eletromagnéticos , Humanos , Masculino , Estresse Oxidativo
6.
J Am Chem Soc ; 129(37): 11402-7, 2007 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-17718488

RESUMO

The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon-organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density functional theory calculations to study the adsorption of a simple ketone [acetone; (CH(3))(2)CO] to the silicon (001) surface. We show both bias and time-dependent STM images and their agreement with total energy DFT calculations, simulated STM images, and published spectroscopic data. We investigate the stability of the resulting adsorbate structures with respect to temperature and applied STM tip bias and current. We demonstrate the ability to convert from the kinetically favored single-dimer alpha-H cleavage adsorbate structure to thermodynamically favored bridge-bonded adsorbate structures. This can be performed for the entire surface using a thermal anneal or, for individual molecules, using the highly confined electron beam of the STM tip. We propose the use of the carbonyl functional group to tether organic molecules to silicon may lead to increased stability of the adsorbates with respect to current-voltage characterization. This has important implications for the creation of robust single-molecule devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA