Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Biomaterials ; 311: 122682, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38959532

RESUMO

Cell migration during many fundamental biological processes including metastasis requires cells to traverse tissue with heterogeneous mechanical cues that direct migration as well as determine force and energy requirements for motility. However, the influence of discrete structural and mechanical cues on migration remains challenging to determine as they are often coupled. Here, we decouple the pro-invasive cues of collagen fiber alignment and tension to study their individual impact on migration. When presented with both cues, cells preferentially travel in the axis of tension against fiber alignment. Computational and experimental data show applying tension perpendicular to alignment increases potential energy stored within collagen fibers, lowering requirements for cell-induced matrix deformation and energy usage during migration compared to motility in the direction of fiber alignment. Energy minimization directs migration trajectory, and tension can facilitate migration against fiber alignment. These findings provide a conceptual understanding of bioenergetics during migration through a fibrous matrix.

2.
Nature ; 630(8018): 968-975, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867043

RESUMO

Obesity is a leading risk factor for progression and metastasis of many cancers1,2, yet can in some cases enhance survival3-5 and responses to immune checkpoint blockade therapies, including anti-PD-1, which targets PD-1 (encoded by PDCD1), an inhibitory receptor expressed on immune cells6-8. Although obesity promotes chronic inflammation, the role of the immune system in the obesity-cancer connection and immunotherapy remains unclear. It has been shown that in addition to T cells, macrophages can express PD-19-12. Here we found that obesity selectively induced PD-1 expression on tumour-associated macrophages (TAMs). Type I inflammatory cytokines and molecules linked to obesity, including interferon-γ, tumour necrosis factor, leptin, insulin and palmitate, induced macrophage PD-1 expression in an mTORC1- and glycolysis-dependent manner. PD-1 then provided negative feedback to TAMs that suppressed glycolysis, phagocytosis and T cell stimulatory potential. Conversely, PD-1 blockade increased the level of macrophage glycolysis, which was essential for PD-1 inhibition to augment TAM expression of CD86 and major histocompatibility complex I and II molecules and ability to activate T cells. Myeloid-specific PD-1 deficiency slowed tumour growth, enhanced TAM glycolysis and antigen-presentation capability, and led to increased CD8+ T cell activity with a reduced level of markers of exhaustion. These findings show that obesity-associated metabolic signalling and inflammatory cues cause TAMs to induce PD-1 expression, which then drives a TAM-specific feedback mechanism that impairs tumour immune surveillance. This may contribute to increased cancer risk yet improved response to PD-1 immunotherapy in obesity.


Assuntos
Neoplasias , Obesidade , Receptor de Morte Celular Programada 1 , Macrófagos Associados a Tumor , Animais , Feminino , Humanos , Masculino , Camundongos , Apresentação de Antígeno/efeitos dos fármacos , Antígeno B7-2/antagonistas & inibidores , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Glicólise/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Obesidade/imunologia , Obesidade/metabolismo , Fagocitose/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos
3.
APL Bioeng ; 8(2): 026120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872716

RESUMO

Tumor vasculature plays a crucial role in tumor progression, affecting nutrition and oxygen transportation as well as the efficiency of drug delivery. While targeting pro-angiogenic growth factors has been a significant focus for treating tumor angiogenesis, recent studies indicate that metabolism also plays a role in regulating endothelial cell behavior. Like cancer cells, tumor endothelial cells undergo metabolic changes that regulate rearrangement for tip cell position during angiogenesis. Our previous studies have shown that altered mechanical properties of the collagen matrix regulate angiogenesis and can promote a tumor vasculature phenotype. Here, we examine the effect of collagen density on endothelial cell tip-stalk cell rearrangement and cellular energetics during angiogenic sprouting. We find that increased collagen density leads to an elevated energy state and an increased rate of tip-stalk cell switching, which is correlated with the energy state of the cells. Tip cells exhibit higher glucose uptake than stalk cells, and inhibition of glucose uptake revealed that invading sprouts rely on glucose to meet elevated energy requirements for invasion in dense matrices. This work helps to elucidate the complex interplay between the mechanical microenvironment and the endothelial cell metabolic status during angiogenesis, which could have important implications for developing new anti-cancer therapies.

4.
Curr Pharm Teach Learn ; 16(9): 102118, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901265

RESUMO

INTRODUCTION: Parental leave policies have the potential to adversely impact faculty well-being and retention if not designed and deployed in a beneficial manner. This exploratory study aims to determine the perceptions of and experiences with parental leave for faculty at pharmacy institutions. METHODS: An exploratory, cross-sectional survey was sent to pharmacy school deans to distribute to faculty. The survey obtained demographic information and asked questions pertaining to parental leave experiences and expectations, including workload coverage and the perceived impact on performance evaluations. Comments regarding ideal parental leave were qualitatively summarized. RESULTS: Fifty-five respondents who had taken parental leave completed the survey, and 51 free text responses were received. A large effect size for the association between academic rank and planned timing of leave and a larger than medium effect size for the association with gender identity was identified. CONCLUSION: The availability, duration, and requirements of parental leave at pharmacy institutions have the potential to negatively impact faculty well-being and retention. This exploratory study provides initial insight into pharmacy faculty's experiences with and expectations of parental leave. Further research is needed to examine this issue on a broader scale and corroborate these findings.

5.
Pathol Oncol Res ; 30: 1611586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689823

RESUMO

Mounting evidence suggests that the immune landscape within prostate tumors influences progression, metastasis, treatment response, and patient outcomes. In this study, we investigated the spatial density of innate immune cell populations within NOD.SCID orthotopic prostate cancer xenografts following microinjection of human DU145 prostate cancer cells. Our laboratory has previously developed nanoscale liposomes that attach to leukocytes via conjugated E-selectin (ES) and kill cancer cells via TNF-related apoptosis inducing ligand (TRAIL). Immunohistochemistry (IHC) staining was performed on tumor samples to identify and quantify leukocyte infiltration for different periods of tumor growth and E-selectin/TRAIL (EST) liposome treatments. We examined the spatial-temporal dynamics of three different immune cell types infiltrating tumors using QuPath image analysis software. IHC staining revealed that F4/80+ tumor-associated macrophages (TAMs) were the most abundant immune cells in all groups, irrespective of time or treatment. The density of TAMs decreased over the course of tumor growth and decreased in response to EST liposome treatments. Intratumoral versus marginal analysis showed a greater presence of TAMs in the marginal regions at 3 weeks of tumor growth which became more evenly distributed over time and in tumors treated with EST liposomes. TUNEL staining indicated that EST liposomes significantly increased cell apoptosis in treated tumors. Additionally, confocal microscopy identified liposome-coated TAMs in both the core and periphery of tumors, highlighting the ability of liposomes to infiltrate tumors by "piggybacking" on macrophages. The results of this study indicate that TAMs represent the majority of innate immune cells within NOD.SCID orthotopic prostate tumors, and spatial density varies widely as a function of tumor size, duration of tumor growth, and treatment of EST liposomes.


Assuntos
Lipossomos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Próstata , Macrófagos Associados a Tumor , Animais , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/imunologia , Camundongos , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose , Modelos Animais de Doenças , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Selectina E/metabolismo , Microambiente Tumoral/imunologia
6.
Curr Pharm Teach Learn ; 16(6): 389-391, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38521625

RESUMO

Parental leave is often an initial barrier to achieving family-career integration, and thus discussing this issue within the broader academic pharmacy community may have important implications for policy development and change. This commentary aims to reveal the implications of inadequate parental leave policies on faculty while highlighting the benefits well-developed policies can have for both parents and their children. Additionally, we put forth a call to action for additional research into the availability and structure of parental leave policies at pharmacy institutions and the effects such policies have on faculty wellbeing, retention, and job satisfaction.


Assuntos
Licença Parental , Humanos , Faculdades de Farmácia/organização & administração , Satisfação no Emprego , Política Organizacional , Docentes de Farmácia
7.
Clin Exp Metastasis ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489056

RESUMO

As a major energy source for cells, mitochondria are involved in cell growth and proliferation, as well as migration, cell fate decisions, and many other aspects of cellular function. Once thought to be irreparably defective, mitochondrial function in cancer cells has found renewed interest, from suggested potential clinical biomarkers to mitochondria-targeting therapies. Here, we will focus on the effect of mitochondria movement on breast cancer progression. Mitochondria move both within the cell, such as to localize to areas of high energetic need, and between cells, where cells within the stroma have been shown to donate their mitochondria to breast cancer cells via multiple methods including tunneling nanotubes. The donation of mitochondria has been seen to increase the aggressiveness and chemoresistance of breast cancer cells, which has increased recent efforts to uncover the mechanisms of mitochondrial transfer. As metabolism and energetics are gaining attention as clinical targets, a better understanding of mitochondrial function and implications in cancer are required for developing effective, targeted therapeutics for cancer patients.

8.
Nanoscale Adv ; 6(1): 209-220, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38125598

RESUMO

Mechanical cues in the tumor microenvironment interplay with internal cellular processes to control cancer cell migration. Microscale pores present in tumor tissue confer varying degrees of confinement on migrating cells, increasing matrix contact and inducing cytoskeletal rearrangement. Previously, we observed that increased collagen matrix contact significantly increased cell migration speed and cell-induced strains within the matrix. However, the effects of this confinement on future cell migration are not fully understood. Here, we use a collagen microtrack platform to determine the effect of confinement on priming MDA-MB-231 cancer cells for fast migration. We show that migration through a confined track results in increased speed and accumulation of migratory machinery, including actin and active mitochondria, in the front of migrating breast cancer cells. By designing microtracks that allow cells to first navigate a region of high confinement, then a region of low confinement, we assessed whether migration in high confinement changes future migratory behavior. Indeed, cells maintain their speed attained in high confinement even after exiting to a region of low confinement, indicating that cells maintain memory of previous matrix cues to fuel fast migration. Active mitochondria maintain their location at the front of the cell even after cells leave high confinement. Furthermore, knocking out vinculin to disrupt focal adhesions disrupts active mitochondrial localization and disrupts the fast migration seen upon release from confinement. Together, these data suggest that active mitochondrial localization in confinement may facilitate fast migration post-confinement. By better understanding how confinement contributes to future cancer cell migration, we can identify potential therapeutic targets to inhibit breast cancer metastasis.

9.
Sci Rep ; 13(1): 17604, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848457

RESUMO

Lung adenocarcinoma (LUAD) is the predominant type of lung cancer in the U.S. and exhibits a broad variety of behaviors ranging from indolent to aggressive. Identification of the biological determinants of LUAD behavior at early stages can improve existing diagnostic and treatment strategies. Extracellular matrix (ECM) remodeling and cancer-associated fibroblasts play a crucial role in the regulation of cancer aggressiveness and there is a growing need to investigate their role in the determination of LUAD behavior at early stages. We analyzed tissue samples isolated from patients with LUAD at early stages and used imaging-based biomarkers to predict LUAD behavior. Single-cell RNA sequencing and histological assessment showed that aggressive LUADs are characterized by a decreased number of ADH1B+ CAFs in comparison to indolent tumors. ADH1B+ CAF enrichment is associated with distinct ECM and immune cell signatures in early-stage LUADs. Also, we found a positive correlation between the gene expression of ADH1B+ CAF markers in early-stage LUADs and better survival. We performed TCGA dataset analysis to validate our findings. Identified associations can be used for the development of the predictive model of LUAD aggressiveness and novel therapeutic approaches.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Síndrome de DiGeorge , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Agressão , Neoplasias Pulmonares/genética , Prognóstico , Biomarcadores Tumorais/genética
10.
Breast Cancer Res ; 25(1): 102, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649089

RESUMO

BACKGROUND: Intratumor heterogeneity is a well-established hallmark of cancer that impedes cancer research, diagnosis, and treatment. Previously, we phenotypically sorted human breast cancer cells based on migratory potential. When injected into mice, highly migratory cells were weakly metastatic and weakly migratory cells were highly metastatic. The purpose of this study was to determine whether these weakly and highly migratory cells interact with each other in vitro or in vivo. METHODS: To assess the relationship between heterogeneity in cancer cell migration and metastatic fitness, MDA-MB-231 and SUM159PT triple negative breast cancer cells were phenotypically sorted into highly migratory and weakly migratory subpopulations and assayed separately and in a 1:1 mixture in vitro and in vivo for metastatic behaviors. Unpaired, two-tailed Student's t-tests, Mann-Whitney tests, ordinary, one-way ANOVAs, and Kruskal-Wallis H tests were performed as appropriate with p < 0.05 as the cutoff for statistical significance. RESULTS: When highly and weakly migratory cells are co-seeded in mixed spheroids, the weakly migratory cells migrated farther than weakly migratory only spheroids. In mixed spheroids, leader-follower behavior occurred with highly migratory cells leading the weakly migratory cells in migration strands. When cell suspensions of highly migratory, weakly migratory, or a 1:1 mixture of both subpopulations were injected orthotopically into mice, both the mixed cell suspensions and weakly migratory cells showed significant distal metastasis, but the highly migratory cells did not metastasize significantly to any location. Notably, significantly more distal metastasis was observed in mice injected with the 1:1 mixture compared to either subpopulation alone. CONCLUSIONS: This study suggests that weakly migratory cells interact with highly migratory cells in a commensal fashion resulting in increased migration and metastasis. Together, these findings indicate that cancer cell subpopulation migration ability does not correlate with metastatic potential and that cooperation between highly migratory and weakly migratory subpopulations can enhance overall metastatic fitness.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Suspensões , Simbiose , Movimento Celular , Bioensaio
11.
Curr Opin Cell Biol ; 83: 102208, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37473514

RESUMO

The mechanisms by which cells sense their mechanical environment and transduce the signal through focal adhesions and signaling pathways to the nucleus is an area of key focus for the field of mechanobiology. In the past two years, there has been expansion of our knowledge of commonly studied pathways, such as YAP/TAZ, FAK/Src, RhoA/ROCK, and Piezo1 signaling, as well as the discovery of new interactions, such as the effect of matrix rigidity of cell mitochondrial function and metabolism, which represent a new and exciting direction for the field as a whole. This review covers the most recent advances in the field of substrate stiffness sensing as well as perspective on future directions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Sinalização YAP , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais , Adesões Focais/metabolismo , Mecanotransdução Celular/fisiologia
12.
J Cell Sci ; 136(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37358264

RESUMO

Cancer-associated fibroblasts (CAFs) have distinct roles within the tumor microenvironment, which can impact the mode and efficacy of tumor cell migration. CAFs are known to increase invasion of less-aggressive breast cancer cells through matrix remodeling and leader-follower dynamics. Here, we demonstrate that CAFs communicate with breast cancer cells through the formation of contact-dependent tunneling nanotubes (TNTs), which allow for the exchange of cargo between cell types. CAF mitochondria are an integral cargo component and are sufficient to increase the 3D migration of cancer cells. This cargo transfer results in an increase in mitochondrial ATP production in cancer cells, whereas it has a negligible impact on glycolytic ATP production. Manually increasing mitochondrial oxidative phosphorylation (OXPHOS) by providing extra substrates for OXPHOS fails to enhance cancer cell migration unless glycolysis is maintained at a constant level. Together, these data indicate that tumor-stromal cell crosstalk via TNTs and the associated metabolic symbiosis is a finely controlled mechanism by which tumor cells co-opt their microenvironment to promote cancer progression and may become a potential therapeutic target.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Humanos , Feminino , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Fibroblastos/metabolismo , Microambiente Tumoral
13.
Biol Cell ; 115(8): e2200104, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37224184

RESUMO

Although it is well-known that cancer-associated fibroblasts (CAFs) play a key role in regulating tumor progression, the effects of mechanical tissue changes on CAFs are understudied. Myofibroblastic CAFs (myCAFs), in particular, are known to alter tumor matrix architecture and composition, heavily influencing the mechanical forces in the tumor microenvironment (TME), but much less is known about how these mechanical changes initiate and maintain the myCAF phenotype. Additionally, recent studies have pointed to the existence of CAFs in circulating tumor cell clusters, indicating that CAFs may be subject to mechanical forces beyond the primary TME. Due to their pivotal role in cancer progression, targeting CAF mechanical regulation may provide therapeutic benefit. Here, we will discuss current knowledge and summarize existing gaps in how CAFs regulate and are regulated by matrix mechanics, including through stiffness, solid and fluid stresses, and fluid shear stress.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Fibroblastos Associados a Câncer/patologia , Fibroblastos/patologia , Neoplasias/patologia , Microambiente Tumoral
14.
Cell Rep ; 42(4): 112338, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027295

RESUMO

During intravasation, cancer cells cross the endothelial barrier and enter the circulation. Extracellular matrix stiffening has been correlated with tumor metastatic potential; however, little is known about the effects of matrix stiffness on intravasation. Here, we utilize in vitro systems, a mouse model, specimens from patients with breast cancer, and RNA expression profiles from The Cancer Genome Atlas Program (TCGA) to investigate the molecular mechanism by which matrix stiffening promotes tumor cell intravasation. Our data show that heightened matrix stiffness increases MENA expression, which promotes contractility and intravasation through focal adhesion kinase activity. Further, matrix stiffening decreases epithelial splicing regulatory protein 1 (ESRP1) expression, which triggers alternative splicing of MENA, decreases the expression of MENA11a, and enhances contractility and intravasation. Altogether, our data indicate that matrix stiffness regulates tumor cell intravasation through enhanced expression and ESRP1-mediated alternative splicing of MENA, providing a mechanism by which matrix stiffness regulates tumor cell intravasation.


Assuntos
Processamento Alternativo , Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Processamento Alternativo/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo
15.
iScience ; 26(4): 106275, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36950111

RESUMO

Cells utilize calcium channels as one of the main signaling mechanisms to sense changes in the extracellular space and convert these changes to intracellular signals. Calcium regulates several key signaling networks, such as the induction of EMT. The current study expands on the understanding of how EMT is controlled via the mechanosensitive calcium channel Piezo1 in cancerous cells, which senses changes in the extracellular matrix stiffness. We model the biophysical environment of healthy and cancerous prostate tissue using polyacrylamide gels of different stiffnesses. Significant increases in calcium steady-state concentration, vimentin expression, and aspect ratio, and decreases in E-cadherin expression were observed by increasing matrix stiffness and also after treatment with Yoda1, a chemical agonist of Piezo1. Overall, this study concludes that Piezo1-regulated calcium flux plays a role in prostate cancer cell metastatic potential by sensing changes in ECM stiffness and modulating EMT markers.

16.
Methods Mol Biol ; 2608: 247-262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653712

RESUMO

Many solid tumors can invade the surrounding three-dimensional (3D) tissue in a collective manner, and increasing evidence suggests that collective migration makes cancer cell clusters more invasive and metastatic than individual cells. A cohesive cohort of cancer cells can have many advantages over individual cells, including more efficient bioenergetics that have been recently identified. Minimization of bioenergetic costs during collective cell migration drives leader-follower dynamics and contributes to enhanced cancer invasion. Hence, it is critical to understand the migratory and bioenergetic dynamics of cancer collective invasion. While analysis of structures and dynamics in a 3D space has been a challenging task, here we describe a widely applicable method to analyze the energy-driven leader-follower hierarchy during cancer collective invasion. An in vitro tumor spheroid model is employed to reproduce the in vivo collective behaviors of cancer cells while allowing high spatiotemporal resolution imaging, where the leader-follower dynamics can be analyzed by tracking nuclear positions. As glucose is one of the main energy sources that fuel cancer cell migration, the quantification of glucose uptake along the invading strands provides an estimate of the energy demand associated with collective invasion. Finally, we describe a method to quantify the dynamics of intracellular energy level using the PercevalHR ATP:ADP ratio biosensor.


Assuntos
Metabolismo Energético , Humanos , Movimento Celular , Invasividade Neoplásica/patologia
17.
Acta Biomater ; 163: 365-377, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483629

RESUMO

The role of intratumor heterogeneity is becoming increasingly apparent in part due to expansion in single cell technologies. Clinically, tumor heterogeneity poses several obstacles to effective cancer therapy dealing with biomarker variability and treatment responses. Matrix stiffening is known to occur during tumor progression and contribute to pathogenesis in several cancer hallmarks, including tumor angiogenesis and metastasis. However, the effects of matrix stiffening on intratumor heterogeneity have not been thoroughly studied. In this study, we applied single-cell RNA sequencing to investigate the differences in the transcriptional landscapes between stiff and compliant MMTV-PyMT mouse mammary tumors. We found similar compositions of cancer and stromal subpopulations in compliant and stiff tumors but differential intercellular communication and a significantly higher concentration of tumor-promoting, M2-like macrophages in the stiffer tumor microenvironments. Interestingly, we found that cancer cells seeded on stiffer substrates recruited more macrophages. Furthermore, elevated matrix stiffness increased Colony Stimulating Factor 1 (CSF-1) expression in breast cancer cells and reduction of CSF-1 expression on stiffer substrates reduced macrophage recruitment. Thus, our results demonstrate that tissue phenotypes were conserved between stiff and compliant tumors but matrix stiffening altered cell-cell interactions which may be responsible for shifting the phenotypic balance of macrophages residing in the tumor microenvironment towards a pro-tumor progression M2 phenotype. STATEMENT OF SIGNIFICANCE: Cells within tumors are highly heterogeneous, posing challenges with treatment and recurrence. While increased tissue stiffness can promote several hallmarks of cancer, its effects on tumor heterogeneity are unclear. We used single-cell RNA sequencing to investigate the differences in the transcriptional landscapes between stiff and compliant MMTV-PyMT mouse mammary tumors. We found similar compositions of cancer and stromal subpopulations in compliant and stiff tumors but differential intercellular communication and a significantly higher concentration of tumor-promoting, M2-like macrophages in the stiffer tumor microenvironments. Using a biomaterial-based platform, we found that cancer cells seeded on stiffer substrates recruited more macrophages, supporting our in vivo findings. Together, our results demonstrate a key role of matrix stiffness in affecting cell-cell communication and macrophage recruitment.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Neoplasias Mamárias Animais , Animais , Camundongos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Microambiente Tumoral , Macrófagos/metabolismo , Comunicação Celular , Neoplasias Mamárias Animais/patologia , Linhagem Celular Tumoral
18.
Am J Pharm Educ ; 87(3): ajpe9023, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36220177

RESUMO

Pharmacy students wishing to maintain their breastfeeding relationship with their child while also excelling within a Doctor of Pharmacy program require important resources and a culture of support. This Commentary examines the challenges that pharmacy students who are breastfeeding face, highlights the importance of pharmacy schools and colleges providing breastfeeding and lactation support, and identifies best practices for implementing support measures for these students. We aim to guide institutions in not only supporting breastfeeding students but empowering them to excel personally, professionally, and academically.


Assuntos
Educação em Farmácia , Estudantes de Farmácia , Feminino , Humanos , Criança , Aleitamento Materno , Faculdades de Farmácia , Poder Psicológico
19.
Am J Health Syst Pharm ; 80(1): e23-e28, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165085

RESUMO

PURPOSE: Chronic disease state management utilizing pharmacists improves quality metrics, allows providers to focus on acute issues, and decreases physician burnout risk. Minimal data exist on pharmacist panel size and its impact. This study aimed to determine appropriate pharmacist panel size based on workload, quality metrics, and patient access. METHODS: This study was a retrospective, multiclinic cohort analysis of patients with diabetes managed by pharmacists at 7 outpatient clinics. The primary objective calculated panel size per full-time equivalent (FTE) utilizing the National Health Interview Survey. Secondary objectives calculated the ideal FTE based on provider to pharmacist ratio and determined the impact of pharmacist panel size on patient access and quality metrics. RESULTS: A total of 4,399 patients were analyzed from 2017 through 2019, with age (range, 57.4 to 62.6 years), sex (52.5% to 63.5% female), race (41.2% to 93.7% African American), insurance type (13.3% to 41% Medicaid), and mean number of medications (13.1 to 20.3) significantly different between sites. Primary outcome results showed that actual panel sizes were less than calculated. However, secondary outcomes indicated that each site was understaffed (actual 0.2 to 0.5 FTE vs calculated 2.52 to 7.34 FTEs) and overbooked (95% to 122% capacity, 17 to 54.2 days for time to third next available appointment). Patients met the composite quality metric 35.1% to 56.3% of the time across sites. CONCLUSION: This study supports the use of patient access data to determine appropriate pharmacist panel size. Utilizing provider panel size to pharmacist ratio and time to third next available appointment is preferable for determining appropriate pharmacist panel size. Further research is needed to evaluate return times to help determine an ideal pharmacist panel size.


Assuntos
Benchmarking , Farmacêuticos , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Assistência Ambulatorial/métodos , Atenção Primária à Saúde
20.
Elife ; 112022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36475545

RESUMO

Cancer cell migration is highly heterogeneous, and the migratory capability of cancer cells is thought to be an indicator of metastatic potential. It is becoming clear that a cancer cell does not have to be inherently migratory to metastasize, with weakly migratory cancer cells often found to be highly metastatic. However, the mechanism through which weakly migratory cells escape from the primary tumor remains unclear. Here, utilizing phenotypically sorted highly and weakly migratory human breast cancer cells, we demonstrate that weakly migratory metastatic cells disseminate from the primary tumor via communication with stromal cells. While highly migratory cells are capable of single cell migration, weakly migratory cells rely on cell-cell signaling with fibroblasts to escape the primary tumor. Weakly migratory cells release microvesicles rich in tissue transglutaminase 2 (Tg2) which activate murine fibroblasts and lead weakly migratory cancer cell migration in vitro. These microvesicles also induce tumor stiffening and fibroblast activation in vivo and enhance the metastasis of weakly migratory cells. Our results identify microvesicles and Tg2 as potential therapeutic targets for metastasis and reveal a novel aspect of the metastatic cascade in which weakly migratory cells release microvesicles which activate fibroblasts to enhance cancer cell dissemination.


Assuntos
Neoplasias da Mama , Micropartículas Derivadas de Células , Animais , Camundongos , Humanos , Feminino , Proteína 2 Glutamina gama-Glutamiltransferase , Neoplasias da Mama/patologia , Fibroblastos/patologia , Movimento Celular , Linhagem Celular Tumoral , Metástase Neoplásica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA