Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R109-R119, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409022

RESUMO

The fundamental body functions that determine maximal O2 uptake (V̇o2max) have not been studied in Aqp5-/- mice (aquaporin 5, AQP5). We measured V̇o2max to globally assess these functions and then investigated why it was found altered in Aqp5-/- mice. V̇o2max was measured by the Helox technique, which elicits maximal metabolic rate by intense cold exposure of the animals. We found V̇o2max reduced in Aqp5-/- mice by 20%-30% compared with wild-type (WT) mice. As AQP5 has been implicated to act as a membrane channel for respiratory gases, we studied whether this is caused by the known lack of AQP5 in the alveolar epithelial membranes of Aqp5-/- mice. Lung function parameters as well as arterial O2 saturation were normal and identical between Aqp5-/- and WT mice, indicating that AQP5 does not contribute to pulmonary O2 exchange. The cause for the decreased V̇o2max thus might be found in decreased O2 consumption of an intensely O2-consuming peripheral organ such as activated brown adipose tissue (BAT). We found indeed that absence of AQP5 greatly reduces the amount of interscapular BAT formed in response to 4 wk of cold exposure, from 63% in WT to 25% in Aqp5-/- animals. We conclude that lack of AQP5 does not affect pulmonary O2 exchange, but greatly inhibits transformation of white to brown adipose tissue. As under cold exposure, BAT is a major source of the animals' heat production, reduction of BAT likely causes the decrease in V̇o2max under this condition.


Assuntos
Tecido Adiposo Marrom , Troca Gasosa Pulmonar , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Termogênese/fisiologia , Pulmão , Consumo de Oxigênio , Temperatura Baixa
4.
Vaccine ; 33(36): 4495-504, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26196325

RESUMO

Live Attenuated Influenza Vaccine (LAIV) strains are associated with cold adapted, temperature sensitive and attenuated phenotypes that have been studied in non-human or immortalized cell cultures as well as in animal models. Using a primary, differentiated human nasal epithelial cell (hNEC) culture system we compared the replication kinetics, levels of cell-associated viral proteins and virus particle release during infection with LAIV or the corresponding wild type (WT) influenza viruses. At both 33 °C and 37 °C, seasonal influenza virus and an antigenically matched LAIV replicated to similar titers in MDCK cells but seasonal influenza virus replicated to higher titers than LAIV in hNEC cultures, suggesting a greater restriction of LAIV replication in hNEC cultures. Despite the disparity in infectious virus production, the supernatants from H1N1 and LAIV infected hNEC cultures had equivalent amounts of viral proteins and hemagglutination titers, suggesting the formation of non-infectious virus particles by LAIV in hNEC cultures.


Assuntos
Células Epiteliais/virologia , Vírus da Influenza A/fisiologia , Vacinas contra Influenza , Mucosa Nasal/virologia , Replicação Viral , Animais , Antígenos Virais/análise , Células Cultivadas , Meios de Cultura/química , Cães , Humanos , Mucosa Nasal/citologia , Temperatura , Vacinas Atenuadas , Carga Viral
5.
Sci Transl Med ; 7(278): 278ra32, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25761888

RESUMO

Early mobilization of critically ill patients with the acute respiratory distress syndrome (ARDS) has emerged as a therapeutic strategy that improves patient outcomes, such as the duration of mechanical ventilation and muscle strength. Despite the apparent efficacy of early mobility programs, their use in clinical practice is limited outside of specialized centers and clinical trials. To evaluate the mechanisms underlying mobility therapy, we exercised acute lung injury (ALI) mice for 2 days after the instillation of lipopolysaccharides into their lungs. We found that a short duration of moderate intensity exercise in ALI mice attenuated muscle ring finger 1 (MuRF1)-mediated atrophy of the limb and respiratory muscles and improved limb muscle force generation. Exercise also limited the influx of neutrophils into the alveolar space through modulation of a coordinated systemic neutrophil chemokine response. Granulocyte colony-stimulating factor (G-CSF) concentrations were systemically reduced by exercise in ALI mice, and in vivo blockade of the G-CSF receptor recapitulated the lung exercise phenotype in ALI mice. Additionally, plasma G-CSF concentrations in humans with acute respiratory failure (ARF) undergoing early mobility therapy showed greater decrements over time compared to control ARF patients. Together, these data provide a mechanism whereby early mobility therapy attenuates muscle wasting and limits ongoing alveolar neutrophilia through modulation of systemic neutrophil chemokines in lung-injured mice and humans.


Assuntos
Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/terapia , Terapia por Exercício , Músculo Esquelético/patologia , Neutrófilos/metabolismo , Condicionamento Físico Animal , Síndrome de Emaciação/patologia , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/complicações , Animais , Quimiocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos/sangue , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Inflamação/patologia , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Atividade Motora , Proteínas Musculares/metabolismo , Atrofia Muscular/patologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Fatores de Tempo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Emaciação/sangue , Síndrome de Emaciação/complicações
6.
Am J Respir Cell Mol Biol ; 52(5): 641-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25295995

RESUMO

Acute respiratory distress syndrome (ARDS) is a common and often fatal inflammatory lung condition without effective targeted therapies. Regulatory T cells (Tregs) resolve lung inflammation, but mechanisms that enhance Tregs to promote resolution of established damage remain unknown. DNA demethylation at the forkhead box protein 3 (Foxp3) locus and other key Treg loci typify the Treg lineage. To test how dynamic DNA demethylation affects lung injury resolution, we administered the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC) to wild-type (WT) mice beginning 24 hours after intratracheal LPS-induced lung injury. Mice that received DAC exhibited accelerated resolution of their injury. Lung CD4(+)CD25(hi)Foxp3(+) Tregs from DAC-treated WT mice increased in number and displayed enhanced Foxp3 expression, activation state, suppressive phenotype, and proliferative capacity. Lymphocyte-deficient recombinase activating gene-1-null mice and Treg-depleted (diphtheria toxin-treated Foxp3(DTR)) mice did not resolve their injury in response to DAC. Adoptive transfer of 2 × 10(5) DAC-treated, but not vehicle-treated, exogenous Tregs rescued Treg-deficient mice from ongoing lung inflammation. In addition, in WT mice with influenza-induced lung inflammation, DAC rescue treatment facilitated recovery of their injury and promoted an increase in lung Treg number. Thus, DNA methyltransferase inhibition, at least in part, augments Treg number and function to accelerate repair of experimental lung injury. Epigenetic pathways represent novel manipulable targets for the treatment of ARDS.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Azacitidina/análogos & derivados , Metilases de Modificação do DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Pulmão/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Linfócitos T Reguladores/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/virologia , Transferência Adotiva , Animais , Azacitidina/farmacologia , Células Cultivadas , Quimiotaxia de Leucócito , Metilases de Modificação do DNA/metabolismo , Decitabina , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Vírus da Influenza A Subtipo H1N1 , Lipopolissacarídeos , Pulmão/enzimologia , Pulmão/imunologia , Pulmão/virologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Pneumonia/induzido quimicamente , Pneumonia/enzimologia , Pneumonia/imunologia , Pneumonia/virologia , Linfócitos T Reguladores/enzimologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Linfócitos T Reguladores/virologia , Fatores de Tempo
7.
J Immunol ; 192(9): 4453-4464, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24688024

RESUMO

Overwhelming lung inflammation frequently occurs following exposure to both direct infectious and noninfectious agents and is a leading cause of mortality worldwide. In that context, immunomodulatory strategies may be used to limit severity of impending organ damage. We sought to determine whether priming the lung by activating the immune system, or immunological priming, could accelerate resolution of severe lung inflammation. We assessed the importance of alveolar macrophages, regulatory T cells, and their potential interaction during immunological priming. We demonstrate that oropharyngeal delivery of low-dose LPS can immunologically prime the lung to augment alveolar macrophage production of IL-10 and enhance resolution of lung inflammation induced by a lethal dose of LPS or by Pseudomonas bacterial pneumonia. IL-10-deficient mice did not achieve priming and were unable to accelerate lung injury resolution. Depletion of lung macrophages or regulatory T cells during the priming response completely abrogated the positive effect of immunological priming on resolution of lung inflammation and significantly reduced alveolar macrophage IL-10 production. Finally, we demonstrated that oropharyngeal delivery of synthetic CpG-oligonucleotides elicited minimal lung inflammation compared with low-dose LPS but nonetheless primed the lung to accelerate resolution of lung injury following subsequent lethal LPS exposure. Immunological priming is a viable immunomodulatory strategy used to enhance resolution in an experimental acute lung injury model with the potential for therapeutic benefit against a wide array of injurious exposures.


Assuntos
Macrófagos Alveolares/imunologia , Pneumonia/imunologia , Linfócitos T Reguladores/imunologia , Vacinação/métodos , Animais , Citocinas/biossíntese , Citometria de Fluxo , Interleucina-10/imunologia , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/prevenção & controle
8.
Am J Physiol Lung Cell Mol Physiol ; 306(8): L709-25, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24508730

RESUMO

Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the body's immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS.


Assuntos
Macrófagos Alveolares/fisiologia , Pneumonia/imunologia , Lesão Pulmonar Aguda/imunologia , Animais , Modelos Animais de Doenças , Humanos , Pneumonia/fisiopatologia
9.
Front Immunol ; 5: 46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24575095

RESUMO

Regulatory T cells (Tregs) suppress exuberant immune system activation and promote immunologic tolerance. Because Tregs modulate both innate and adaptive immunity, the biomedical community has developed an intense interest in using Tregs for immunotherapy. Conditions that require clinical tolerance to improve outcomes - autoimmune disease, solid organ transplantation, and hematopoietic stem cell transplantation - may benefit from Treg immunotherapy. Investigators have designed ex vivo strategies to isolate, preserve, expand, and infuse Tregs. Protocols to manipulate Treg populations in vivo have also been considered. Barriers to clinically feasible Treg immunotherapy include Treg stability, off-cell effects, and demonstration of cell preparation purity and potency. Clinical trials involving Treg adoptive transfer to treat graft versus host disease preliminarily demonstrated the safety and efficacy of Treg immunotherapy in humans. Future work will need to confirm the safety of Treg immunotherapy and establish the efficacy of specific Treg subsets for the treatment of immune-mediated disease.

11.
Am J Respir Cell Mol Biol ; 48(5): 635-46, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23349051

RESUMO

Acute respiratory distress syndrome (ARDS) causes significant morbidity and mortality. Exacerbating factors increasing the risk of ARDS remain unknown. Supplemental oxygen is often necessary in both mild and severe lung disease. The potential effects of supplemental oxygen may include augmentation of lung inflammation by inhibiting anti-inflammatory pathways in alveolar macrophages. We sought to determine oxygen-derived effects on the anti-inflammatory A2A adenosinergic (ADORA2A) receptor in macrophages, and the role of the ADORA2A receptor in lung injury. Wild-type (WT) and ADORA2A(-/-) mice received intratracheal lipopolysaccharide (IT LPS), followed 12 hours later by continuous exposure to 21% oxygen (control mice) or 60% oxygen for 1 to 3 days. We measured the phenotypic endpoints of lung injury and the alveolar macrophage inflammatory state. We tested an ADORA2A-specific agonist, CGS-21680 hydrochloride, in LPS plus oxygen-exposed WT and ADORA2A(-/-) mice. We determined the specific effects of myeloid ADORA2A, using chimera experiments. Compared with WT mice, ADORA2A(-/-) mice exposed to IT LPS and 60% oxygen demonstrated significantly more histologic lung injury, alveolar neutrophils, and protein. Macrophages from ADORA2A(-/-) mice exposed to LPS plus oxygen expressed higher concentrations of proinflammatory cytokines and cosignaling molecules. CGS-21680 prevented the oxygen-induced augmentation of lung injury after LPS only in WT mice. Chimera experiments demonstrated that the transfer of WT but not ADORA2A(-/-) bone marrow cells into irradiated ADORA2A(-/-) mice reduced lung injury after LPS plus oxygen, demonstrating myeloid ADORA2A protection. ADORA2A is protective against lung injury after LPS and oxygen. Oxygen after LPS increases macrophage activation to augment lung injury by inhibiting the ADORA2A pathway.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Macrófagos Alveolares/metabolismo , Oxigênio/toxicidade , Receptor A2A de Adenosina/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Quimiocinas/metabolismo , Técnicas de Inativação de Genes , Mediadores da Inflamação/fisiologia , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenoterapia , Fenetilaminas/farmacologia , Receptor A2A de Adenosina/genética
12.
Am J Respir Cell Mol Biol ; 48(1): 35-43, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23002097

RESUMO

Acute lung injury (ALI) causes significant morbidity and mortality. Fibroproliferation in ALI results in worse outcomes, but the mechanisms governing fibroproliferation remain poorly understood. Regulatory T cells (Tregs) are important in lung injury resolution. Their role in fibroproliferation is unknown. We sought to identify the role of Tregs in ALI fibroproliferation, using a murine model of lung injury. Wild-type (WT) and lymphocyte-deficient Rag-1(-/-) mice received intratracheal LPS. Fibroproliferation was characterized by histology and the measurement of lung collagen. Lung fibrocytes were measured by flow cytometry. To dissect the role of Tregs in fibroproliferation, Rag-1(-/-) mice received CD4(+)CD25(+) (Tregs) or CD4(+)CD25(-) Tcells (non-Tregs) at the time of LPS injury. To define the role of the chemokine (C-X-C motif) ligand 12 (CXCL12)-CXCR4 pathway in ALI fibroproliferation, Rag-1(-/-) mice were treated with the CXCR4 antagonist AMD3100 to block fibrocyte recruitment. WT and Rag-1(-/-) mice demonstrated significant collagen deposition on Day 3 after LPS. WT mice exhibited the clearance of collagen, but Rag-1(-/-) mice developed persistent fibrosis. This fibrosis was mediated by the sustained epithelial expression of CXCL12 (or stromal cell-derived factor 1 [SDF-1]) that led to increased fibrocyte recruitment. The adoptive transfer of Tregs resolved fibroproliferation by decreasing CXCL12 expression and subsequent fibrocyte recruitment. Blockade of the CXCL12-CXCR4 axis with AMD3100 also decreased lung fibrocytes and fibroproliferation. These results indicate a central role for Tregs in the resolution of ALI fibroproliferation by reducing fibrocyte recruitment along the CXCL12-CXCR4 axis. A dissection of the role of Tregs in ALI fibroproliferation may inform the design of new therapeutic tools for patients with ALI.


Assuntos
Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Benzilaminas , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Ciclamos , Fibroblastos/imunologia , Fibroblastos/patologia , Compostos Heterocíclicos/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/imunologia , Miofibroblastos/patologia , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Transdução de Sinais/imunologia , Linfócitos T Reguladores/patologia
13.
Tissue Barriers ; 1(4): e25248, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24665410

RESUMO

Chronic obstructive pulmonary disease (COPD) causes significant morbidity and mortality. Cigarette smoke, the most common risk factor for COPD, induces airway and alveolar epithelial barrier permeability and initiates an innate immune response. Changes in abundance of aquaporin 5 (AQP5), a water channel, can affect epithelial permeability and immune response after cigarette smoke exposure. To determine how AQP5-derived epithelial barrier modulation affects epithelial immune response to cigarette smoke and development of emphysema, WT and AQP5(-/-) mice were exposed to cigarette smoke (CS). We measured alveolar cell counts and differentials, and assessed histology, mean-linear intercept (MLI), and surface-to-volume ratio (S/V) to determine severity of emphysema. We quantified epithelial-derived signaling proteins for neutrophil trafficking, and manipulated AQP5 levels in an alveolar epithelial cell line to determine specific effects on neutrophil transmigration after CS exposure. We assessed paracellular permeability and epithelial turnover in response to CS. In contrast to WT mice, AQP5(-/-) mice exposed to 6 months of CS did not demonstrate a significant increase in MLI or a significant decrease in S/V compared with air-exposed mice, conferring protection against emphysema. After sub-acute (4 weeks) and chronic (6 mo) CS exposure, AQP5(-/-) mice had fewer alveolar neutrophil but similar lung neutrophil numbers as WT mice. The presence of AQP5 in A549 cells, an alveolar epithelial cell line, was associated with increase neutrophil migration after CS exposure. Compared with CS-exposed WT mice, neutrophil ligand (CD11b) and epithelial receptor (ICAM-1) expression were reduced in CS-exposed AQP5(-/-) mice, as was secreted LPS-induced chemokine (LIX), an epithelial-derived neutrophil chemoattractant. CS-exposed AQP5(-/-) mice demonstrated decreased type I pneumocytes and increased type II pneumocytes compared with CS-exposed WT mice suggestive of enhanced epithelial repair. Absence of AQP5 protected against CS-induced emphysema with reduced epithelial permeability, neutrophil migration, and altered epithelial cell turnover which may enhance repair.

14.
J Immunol ; 189(5): 2234-45, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22844117

RESUMO

Although early events in the pathogenesis of acute lung injury (ALI) have been defined, little is known about the mechanisms mediating resolution. To search for determinants of resolution, we exposed wild type (WT) mice to intratracheal LPS and assessed the response at intervals to day 10, when injury had resolved. Inducible NO synthase (iNOS) was significantly upregulated in the lung at day 4 after LPS. When iNOS-/- mice were exposed to intratracheal LPS, early lung injury was attenuated; however, recovery was markedly impaired compared with WT mice. iNOS-/- mice had increased mortality and sustained increases in markers of lung injury. Adoptive transfer of WT (iNOS+/+) bone marrow-derived monocytes or direct adenoviral gene delivery of iNOS into injured iNOS-/- mice restored resolution of ALI. Irradiated bone marrow chimeras confirmed the protective effects of myeloid-derived iNOS but not of epithelial iNOS. Alveolar macrophages exhibited sustained expression of cosignaling molecule CD86 in iNOS-/- mice compared with WT mice. Ab-mediated blockade of CD86 in iNOS-/- mice improved survival and enhanced resolution of lung inflammation. Our findings show that monocyte-derived iNOS plays a pivotal role in mediating resolution of ALI by modulating lung immune responses, thus facilitating clearance of alveolar inflammation and promoting lung repair.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/terapia , Monócitos/enzimologia , Monócitos/imunologia , Óxido Nítrico Sintase Tipo II/uso terapêutico , Lesão Pulmonar Aguda/imunologia , Animais , Antígeno B7-2/biossíntese , Linhagem Celular , Linhagem Celular Transformada , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/uso terapêutico , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/patologia , Óxido Nítrico Sintase Tipo II/deficiência
15.
PLoS One ; 7(6): e38717, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22715407

RESUMO

Aquaporin-5 (AQP5) is a water-specific channel located on the apical surface of airway epithelial cells. In addition to regulating transcellular water permeability, AQP5 can regulate paracellular permeability, though the mechanisms by which this occurs have not been determined. Microtubules also regulate paracellular permeability. Here, we report that AQP5 promotes microtubule assembly and helps maintain the assembled microtubule steady state levels with slower turnover dynamics in cells. Specifically, reduced levels of AQP5 correlated with lower levels of assembled microtubules and decreased paracellular permeability. In contrast, overexpression of AQP5 increased assembly of microtubules, with evidence of increased MT stability, and promoted the formation of long straight microtubules in the apical domain of the epithelial cells. These findings indicate that AQP5-mediated regulation of microtubule dynamics modulates airway epithelial barrier properties and epithelial function.


Assuntos
Aquaporina 5/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Células Epiteliais/metabolismo , Microtúbulos/metabolismo , Aquaporina 5/genética , Linhagem Celular Transformada , Células Epiteliais/citologia , Humanos , Microtúbulos/genética
16.
Am J Physiol Lung Cell Mol Physiol ; 303(4): L343-53, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22683574

RESUMO

Pulmonary arterial smooth muscle cell (PASMC) migration is a key component of the vascular remodeling that occurs during the development of hypoxic pulmonary hypertension, although the mechanisms governing this phenomenon remain poorly understood. Aquaporin-1 (AQP1), an integral membrane water channel protein, has recently been shown to aid in migration of endothelial cells. Since AQP1 is expressed in certain types of vascular smooth muscle, we hypothesized that AQP1 would be expressed in PASMCs and would be required for migration in response to hypoxia. Using PCR and immunoblot techniques, we determined the expression of AQPs in pulmonary vascular smooth muscle and the effect of hypoxia on AQP levels, and we examined the role of AQP1 in hypoxia-induced migration in rat PASMCs using Transwell filter assays. Moreover, since the cytoplasmic tail of AQP1 contains a putative calcium binding site and an increase in intracellular calcium concentration ([Ca(2+)](i)) is a hallmark of hypoxic exposure in PASMCs, we also determined whether the responses were Ca(2+) dependent. Results were compared with those obtained in aortic smooth muscle cells (AoSMCs). We found that although AQP1 was abundant in both PASMCs and AoSMCs, hypoxia selectively increased AQP1 protein levels, [Ca(2+)](i), and migration in PASMCs. Blockade of Ca(2+) entry through voltage-dependent Ca(2+) or nonselective cation channels prevented the hypoxia-induced increase in PASMC [Ca(2+)](i), AQP1 levels, and migration. Silencing AQP1 via siRNA also prevented hypoxia-induced migration of PASMCs. Our results suggest that hypoxia induces a PASMC-specific increase in [Ca(2+)](i) that results in increased AQP1 protein levels and cell migration.


Assuntos
Aquaporina 1/genética , Cálcio/metabolismo , Movimento Celular , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia , Regulação para Cima/genética , Animais , Aorta/patologia , Aquaporina 1/metabolismo , Hipóxia Celular , Proliferação de Células , Espaço Intracelular/metabolismo , Masculino , Músculo Liso Vascular/patologia , Ratos , Ratos Wistar
17.
Am J Respir Crit Care Med ; 185(8): 825-34, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22312013

RESUMO

RATIONALE: Acute lung injury (ALI) is a debilitating condition associated with severe skeletal muscle weakness that persists in humans long after lung injury has resolved. The molecular mechanisms underlying this condition are unknown. OBJECTIVES: To identify the muscle-specific molecular mechanisms responsible for muscle wasting in a mouse model of ALI. METHODS: Changes in skeletal muscle weight, fiber size, in vivo contractile performance, and expression of mRNAs and proteins encoding muscle atrophy-associated genes for muscle ring finger-1 (MuRF1) and atrogin1 were measured. Genetic inactivation of MuRF1 or electroporation-mediated transduction of miRNA-based short hairpin RNAs targeting either MuRF1 or atrogin1 were used to identify their role in ALI-associated skeletal muscle wasting. MEASUREMENTS AND MAIN RESULTS: Mice with ALI developed profound muscle atrophy and preferential loss of muscle contractile proteins associated with reduced muscle function in vivo. Although mRNA expression of the muscle-specific ubiquitin ligases, MuRF1 and atrogin1, was increased in ALI mice, only MuRF1 protein levels were up-regulated. Consistent with these changes, suppression of MuRF1 by genetic or biochemical approaches prevented muscle fiber atrophy, whereas suppression of atrogin1 expression was without effect. Despite resolution of lung injury and down-regulation of MuRF1 and atrogin1, force generation in ALI mice remained suppressed. CONCLUSIONS: These data show that MuRF1 is responsible for mediating muscle atrophy that occurs during the period of active lung injury in ALI mice and that, as in humans, skeletal muscle dysfunction persists despite resolution of lung injury.


Assuntos
Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Proteínas Musculares/genética , Atrofia Muscular/genética , Ubiquitina-Proteína Ligases/genética , Animais , Western Blotting , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Regulação para Baixo , Regulação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise Multivariada , Força Muscular/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/patologia , Domínios RING Finger/genética , Distribuição Aleatória , Sensibilidade e Especificidade , Proteínas com Motivo Tripartido
18.
Exp Lung Res ; 37(10): 575-84, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22044313

RESUMO

To test the hypothesis that interleukin-6 (IL-6) contributes to the development of ventilator-associated lung injury (VALI), IL-6-deficient (IL6(-/-)) and wild-type control (WT) mice received intratracheal hydrochloric acid followed by randomization to mechanical ventilation (MV + IT HCl) or spontaneous ventilation (IT HCl). After 4 hours, injury was assessed by estimation of lung lavage protein concentration and total and differential cell counts, wet/dry lung weight ratio, pulmonary cell death, histologic inflammation score (LIS), and parenchymal myeloperoxidase (MPO) concentration. Vascular endothelial growth factor (VEGF) concentration was measured in lung lavage and homogenate, as IL-6 and stretch both regulate expression of this potent mediator of permeability. MV-induced increases in alveolar barrier dysfunction and lavage VEGF were attenuated in IL6(-/-) mice as compared with WT controls, whereas tissue VEGF concentration increased. The effects of IL-6 deletion on alveolar permeability and VEGF concentration were inflammation independent, as parenchymal MPO concentration, LIS, and lavage total and differential cell counts did not differ between WT and IL6(-/-) mice following MV + IT HCl. These data support a role for IL-6 in promoting VALI in this two-hit model. Strategies to interfere with IL-6 expression or signaling may represent important therapeutic targets to limit the injurious effects of MV in inflamed lungs.


Assuntos
Permeabilidade Capilar/fisiologia , Interleucina-6/metabolismo , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Pulmão/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/deficiência , Interleucina-6/genética , Pulmão/patologia , Lesão Pulmonar/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Respiração Artificial/métodos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ventiladores Mecânicos
19.
PLoS One ; 6(6): e20712, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21713037

RESUMO

BACKGROUND: Respiratory dysfunction is a major contributor to morbidity and mortality in aged populations. The susceptibility to pulmonary insults is attributed to "low pulmonary reserve", ostensibly reflecting a combination of age-related musculoskeletal, immunologic and intrinsic pulmonary dysfunction. METHODS/PRINCIPAL FINDINGS: Using a murine model of the aging lung, senescent DBA/2 mice, we correlated a longitudinal survey of airspace size and injury measures with a transcriptome from the aging lung at 2, 4, 8, 12, 16 and 20 months of age. Morphometric analysis demonstrated a nonlinear pattern of airspace caliber enlargement with a critical transition occurring between 8 and 12 months of age marked by an initial increase in oxidative stress, cell death and elastase activation which is soon followed by inflammatory cell infiltration, immune complex deposition and the onset of airspace enlargement. The temporally correlative transcriptome showed exuberant induction of immunoglobulin genes coincident with airspace enlargement. Immunohistochemistry, ELISA analysis and flow cytometry demonstrated increased immunoglobulin deposition in the lung associated with a contemporaneous increase in activated B-cells expressing high levels of TLR4 (toll receptor 4) and CD86 and macrophages during midlife. These midlife changes culminate in progressive airspace enlargement during late life stages. CONCLUSION/SIGNIFICANCE: Our findings establish that a tissue-specific aging program is evident during a presenescent interval which involves early oxidative stress, cell death and elastase activation, followed by B lymphocyte and macrophage expansion/activation. This sequence heralds the progression to overt airspace enlargement in the aged lung. These signature events, during middle age, indicate that early stages of the aging immune system may have important correlates in the maintenance of tissue morphology. We further show that time-course analyses of aging models, when informed by structural surveys, can reveal nonintuitive signatures of organ-specific aging pathology.


Assuntos
Envelhecimento/patologia , Homeostase , Pulmão/patologia , Pulmão/fisiopatologia , Animais , Linfócitos B/imunologia , Morte Celular , Imunoglobulinas/metabolismo , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Monócitos/imunologia , Estresse Oxidativo , Fenótipo
20.
Am J Respir Cell Mol Biol ; 45(1): 120-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20870893

RESUMO

Epithelial cells have the ability to regulate paracellular permeability dynamically in response to extracellular stimuli. With every respiratory effort, airway epithelial cells are exposed to both physiologic as well as pathologic stimuli, and regulation of the epithelial barrier in response to these stimuli is crucial to respiratory function. We report that increased membrane septin-2 localization mediates decreases in paracellular permeability by altering cortical actin arrangement in human airway epithelial cells. This phenomenon occurs in response to both physiologic levels of shear stress and a pathologic stimulus, particular matter exposure. The resulting changes in barrier function in response to septin-2 redistribution have a significant impact on the ability of the apical ligand, epidermal growth factor, to interact with its receptor, epidermal growth factor receptor, which is segregated to the basolateral side in airway epithelial cells. This suggests that the dynamic regulation of the epithelial barrier function is essential in regulating signaling responses to extracellular stimuli. These findings indicate that septin-2 plays a fundamental role in regulating barrier function by altering cortical actin expression.


Assuntos
Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Membrana Celular/patologia , Cães , Fator de Crescimento Epidérmico/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Transporte Proteico , Mucosa Respiratória/patologia , Septinas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA