Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Syst Biol Appl ; 10(1): 42, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637530

RESUMO

Single cancer cells within a tumor exhibit variable levels of resistance to drugs, ultimately leading to treatment failures. While tumor heterogeneity is recognized as a major obstacle to cancer therapy, standard dose-response measurements for the potency of targeted kinase inhibitors aggregate populations of cells, obscuring intercellular variations in responses. In this work, we develop an analytical and experimental framework to quantify and model dose responses of individual cancer cells to drugs. We first explore the connection between population and single-cell dose responses using a computational model, revealing that multiple heterogeneous populations can yield nearly identical population dose responses. We demonstrate that a single-cell analysis method, which we term a threshold inhibition surface, can differentiate among these populations. To demonstrate the applicability of this method, we develop a dose-titration assay to measure dose responses in single cells. We apply this assay to breast cancer cells responding to phosphatidylinositol-3-kinase inhibition (PI3Ki), using clinically relevant PI3Kis on breast cancer cell lines expressing fluorescent biosensors for kinase activity. We demonstrate that MCF-7 breast cancer cells exhibit heterogeneous dose responses with some cells requiring over ten-fold higher concentrations than the population average to achieve inhibition. Our work reimagines dose-response relationships for cancer drugs in an emerging paradigm of single-cell tumor heterogeneity.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Células MCF-7
2.
Bioengineering (Basel) ; 10(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36829763

RESUMO

Chemotaxis, regulated by oscillatory signals, drives critical processes in cancer metastasis. Crucial chemoattractant molecules in breast cancer, CXCL12 and EGF, drive the activation of ERK and Akt. Regulated by feedback and crosstalk mechanisms, oscillatory signals in ERK and Akt control resultant changes in cell morphology and chemotaxis. While commonly studied at the population scale, metastasis arises from small numbers of cells that successfully disseminate, underscoring the need to analyze processes that cancer cells use to connect oscillatory signaling to chemotaxis at single-cell resolution. Furthermore, little is known about how to successfully target fast-migrating cells to block metastasis. We investigated to what extent oscillatory networks in single cells associate with heterogeneous chemotactic responses and how targeted inhibitors block signaling processes in chemotaxis. We integrated live, single-cell imaging with time-dependent data processing to discover oscillatory signal processes defining heterogeneous chemotactic responses. We identified that short ERK and Akt waves, regulated by MEK-ERK and p38-MAPK signaling pathways, determine the heterogeneous random migration of cancer cells. By comparison, long ERK waves and the morphological changes regulated by MEK-ERK signaling, determine heterogeneous directed motion. This study indicates that treatments against chemotaxis in consider must interrupt oscillatory signaling.

3.
J Theor Biol ; 555: 111294, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36195198

RESUMO

Cells process environmental cues by activating intracellular signaling pathways with numerous interconnections and opportunities for cross-regulation. We employed a systems biology approach to investigate intersections of kinase p38, a context-dependent tumor suppressor or promoter, with Akt and ERK, two kinases known to promote cell survival, proliferation, and drug resistance in cancer. Using live, single cell microscopy, multiplexed fluorescent reporters of p38, Akt, and ERK activities, and a custom automated image-processing pipeline, we detected marked heterogeneity of signaling outputs in breast cancer cells stimulated with chemokine CXCL12 or epidermal growth factor (EGF). Basal activity of p38 correlated inversely with amplitude of Akt and ERK activation in response to either ligand. Remarkably, small molecule inhibitors of p38 immediately decreased basal activities of Akt and ERK but increased the proportion of cells with high amplitude ligand-induced activation of Akt signaling. To identify mechanisms underlying cross-talk of p38 with Akt signaling, we developed a computational model incorporating subcellular compartmentalization of signaling molecules by scaffold proteins. Dynamics of this model revealed that subcellular scaffolding of Akt accounted for observed regulation by p38. The model also predicted that differences in the amount of scaffold protein in a subcellular compartment captured the observed single cell heterogeneity in signaling. Finally, our model predicted that reduction in kinase signaling can be accomplished by both scaffolding and direct kinase inhibition. However, scaffolding inhibition can potentiate future kinase activity by redistribution of pathway components, potentially amplifying oncogenic signaling. These studies reveal how computational modeling can decipher mechanisms of cross-talk between the p38 and Akt signaling pathways and point to scaffold proteins as central regulators of signaling dynamics and amplitude.


Assuntos
Fator de Crescimento Epidérmico , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Quimiocina CXCL12/metabolismo , Ligantes , Simulação por Computador , Sistema de Sinalização das MAP Quinases
4.
Nat Commun ; 13(1): 3788, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778381

RESUMO

Therapeutic antibody development requires selection and engineering of molecules with high affinity and other drug-like biophysical properties. Co-optimization of multiple antibody properties remains a difficult and time-consuming process that impedes drug development. Here we evaluate the use of machine learning to simplify antibody co-optimization for a clinical-stage antibody (emibetuzumab) that displays high levels of both on-target (antigen) and off-target (non-specific) binding. We mutate sites in the antibody complementarity-determining regions, sort the antibody libraries for high and low levels of affinity and non-specific binding, and deep sequence the enriched libraries. Interestingly, machine learning models trained on datasets with binary labels enable predictions of continuous metrics that are strongly correlated with antibody affinity and non-specific binding. These models illustrate strong tradeoffs between these two properties, as increases in affinity along the co-optimal (Pareto) frontier require progressive reductions in specificity. Notably, models trained with deep learning features enable prediction of novel antibody mutations that co-optimize affinity and specificity beyond what is possible for the original antibody library. These findings demonstrate the power of machine learning models to greatly expand the exploration of novel antibody sequence space and accelerate the development of highly potent, drug-like antibodies.


Assuntos
Regiões Determinantes de Complementaridade , Aprendizado de Máquina , Afinidade de Anticorpos , Benchmarking , Biofísica , Regiões Determinantes de Complementaridade/genética
5.
Cell Mol Bioeng ; 14(1): 49-64, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643466

RESUMO

INTRODUCTION: CXCR4 and epidermal growth factor receptor (EGFR) represent two major families of receptors, G-protein coupled receptors and receptor tyrosine kinases, with central functions in cancer. While utilizing different upstream signaling molecules, both CXCR4 and EGFR activate kinases ERK and Akt, although single-cell activation of these kinases is markedly heterogeneous. One hypothesis regarding the origin of signaling heterogeneity proposes that intercellular variations arise from differences in pre-existing intracellular states set by extrinsic noise. While pre-existing cell states vary among cells, each pre-existing state defines deterministic signaling outputs to downstream effectors. Understanding causes of signaling heterogeneity will inform treatment of cancers with drugs targeting drivers of oncogenic signaling. METHODS: We built a single-cell computational model to predict Akt and ERK responses to CXCR4- and EGFR-mediated stimulation. We investigated signaling heterogeneity through these receptors and tested model predictions using quantitative, live-cell time-lapse imaging. RESULTS: We show that the pre-existing cell state predicts single-cell signaling through both CXCR4 and EGFR. Computational modeling reveals that the same set of pre-existing cell states explains signaling heterogeneity through both EGFR and CXCR4 at multiple doses of ligands and in two different breast cancer cell lines. The model also predicts how phosphatidylinositol-3-kinase (PI3K) targeted therapies potentiate ERK signaling in certain breast cancer cells and that low level, combined inhibition of MEK and PI3K ablates potentiated ERK signaling. CONCLUSIONS: Our data demonstrate that a conserved motif exists for EGFR and CXCR4 signaling and suggest potential clinical utility of the computational model to optimize therapy.

6.
Curr Opin Syst Biol ; 26: 98-108, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35647414

RESUMO

Heterogeneity in cell signaling pathways is increasingly appreciated as a fundamental feature of cell biology and a driver of clinically relevant disease phenotypes. Understanding the causes of heterogeneity, the cellular mechanisms used to control heterogeneity, and the downstream effects of heterogeneity in single cells are all key obstacles for manipulating cellular populations and treating disease. Recent advances in genetic engineering, including multiplexed fluorescent reporters, have provided unprecedented measurements of signaling heterogeneity, but these vast data sets are often difficult to interpret, necessitating the use of computational techniques to extract meaning from the data. Here, we review recent advances in computational methods for extracting meaning from these novel data streams. In particular, we evaluate how machine learning methods related to dimensionality reduction and classification can identify structure in complex, dynamic datasets, simplifying interpretation. We also discuss how mechanistic models can be merged with heterogeneous data to understand the underlying differences between cells in a population. These methods are still being developed, but the work reviewed here offers useful applications of specific analysis techniques that could enable the translation of single-cell signaling data to actionable biological understanding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA