Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(36): 22381-22389, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35480805

RESUMO

We performed laser-induced fluorescence (LIF) spectroscopy of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its solvated complexes with acetonitrile (ACN) and benzene (Bz), under the jet-cooled gas-phase condition. We also carried out fluorescence and its time profile measurements in TCNQ/Bz/hexane solution to compare with the gas-phase results. The LIF excitation spectrum of the S1 (ππ*)-S0 electronic transition of TCNQ monomer exhibited unusual vibronic structure with the maximum intensity at ∼3000 cm-1 above the band origin. In addition, the fluorescence lifetime is more than 100 times longer than that in hexane solution with most of the bands showing double exponential decay. The unusual feature of the vibronic bands is intrinsic and not due to the presence of other species, as confirmed by UV-UV hole-burning (HB) spectroscopy. These unusual features of S1 are thought to be due to the coupling with the S2 state, where S2 was revealed to have intramolecular charge-transfer (ICT) character. The S1-S0 transition of the TCNQ-ACN complex exhibited sharp vibronic bands which are red-shifted by 120 cm-1 from those of the monomer, indicating van der Waals (vdW) interaction between them; however, the fluorescence lifetime was drastically shortened. In contrast, the TCNQ-Bz complex gave a broad electronic spectrum. The study of the fluorescence and its time profile in TCNQ/Bz/hexane solution clearly shows the formation of the CT complex between TCNQ and Bz. Based on the experimental results and density functional theory (DFT) calculations, we propose that in the TCNQ monomer and TCNQ-ACN complex the S1 (ππ*) state is coupled to the intramolecular CT state, while the S1 state of TCNQ in the TCNQ-Bz complex is more strongly coupled to the intermolecular CT state.

2.
Phys Chem Chem Phys ; 23(2): 834-845, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33284297

RESUMO

Cinnamate derivatives are very useful as UV protectors in nature and as sunscreen reagents in daily life. They convert harmful UV energy to thermal energy through effective nonradiative decay (NRD) including trans → cis photoisomerization. However, the mechanism is not simple because different photoisomeirzation routes have been observed for different substituted cinnamates. Here, we theoretically examined the substitution effects at the phenyl ring of methylcinnamate (MC), a non-substituted cinnamate, on the electronic structure and the NRD route involving trans → cis isomerization based on time-dependent density functional theory. A systematic reaction pathway search using the single-component artificial force-induced reaction method shows that the very efficient photoisomerization route of MC can be essentially described as "1ππ* (trans) → 1nπ* → T1 (3ππ*) → S0 (trans or cis)". We found that for efficient 1ππ* (trans) → 1nπ* internal conversion (IC), MC should have the substituent at the appropriate position of the phenyl ring to stabilize the highest occupied π orbital. Substitution at the para position of MC slightly lowers the 1ππ* state energy and photoisomerization occurs via a slightly less efficient "1ππ* (trans) → 3nπ* → T1 (3ππ*) → S0 (trans or cis)" pathway. Substitution at the meta or ortho positions of MC significantly lowers the 1ππ* state energy so that the energy barrier of IC (1ππ* → 1nπ*) becomes very high. This substitution leads to a much longer 1ππ* state lifetime than that of MC and para-substituted MC, and a change in the dominant photoisomerization route to "1ππ* (trans) → C[double bond, length as m-dash]C bond twisting on 1ππ* → S0 (trans or cis)". As a whole, the "1ππ* → 1nπ*" IC observed in MC is the most important initial step for the rapid change of UV energy to thermal energy. We also found that the stabilization of the π orbital (i) minimizes the energy gap between 1ππ* and 1nπ* at the 1ππ* minimum and (ii) makes the 0-0 level of 1ππ* higher than 1nπ* as observed in MC. These MC-like relationships between the 1ππ* and 1nπ* energies should be ideal to maximize the "1ππ* → 1nπ*" IC rate constant according to Marcus theory.


Assuntos
Cinamatos/química , Processos Fotoquímicos , Protetores Solares/química , Cinamatos/efeitos da radiação , Teoria da Densidade Funcional , Isomerismo , Modelos Químicos , Protetores Solares/efeitos da radiação , Raios Ultravioleta
3.
J Phys Chem A ; 124(27): 5580-5589, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32551660

RESUMO

We performed UV spectroscopy for p-coumaric acid (pCA), ferulic acid (FA), and caffeic acid (CafA) under jet-cooled gas-phase conditions by using a laser-ablation source. These molecules showed the S1(1ππ*)-S0 absorption in the 31 500-33 500 cm-1 region. Both pCA and FA exhibited sharp vibronic bands, while CafA showed only a broad feature. The decay time profile of the 1ππ* state was measured by picosecond pump-probe spectroscopy, and the transient state produced through the nonradiative decay (NRD) from 1ππ* and its time profile were measured by nanosecond UV-deep UV pump-probe spectroscopy. The transient state was observed for pCA and FA and assigned to the T1 state, and we concluded that the NRD process of 1ππ* is S1(1ππ*) → 1nπ* → T1(3ππ*), similar to those of methyl cinnamate and para-substituted cinnamates such as p-hydroxy and p-methoxy methyl cinnamate. On the other hand, the transient T1 state was not detected in CafA, and its NRD route is suggested to be S1(1ππ*) → 1πσ* → H atom elimination, similar to those of phenol and catechol. The effect of a hydrogen bond on the electronic state and NRD process was investigated, and it was found that the H-bonding lowers the 1ππ* energy and suppresses the NRD process for all the species.

4.
J Phys Chem A ; 124(7): 1272-1278, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31992045

RESUMO

The title compound, 2-ethylhexyl-4-methoxycinnamate (2EH4MC), is known as a typical ingredient of sunscreen cosmetics that effectively converts the absorbed UV-B light to thermal energy. This energy conversion process includes the nonradiative decay (NRD): trans-cis isomerization and finally going back to the original structure with a release of thermal energy. In this study, we performed UV spectroscopy for jet-cooled 2EH4MC to investigate the electronic/geometrical structures as well as the NRD mechanism. Laser-induced-fluorescence (LIF) spectroscopy gave the well-resolved vibronic structure of the S1-S0 transition; UV-UV hole-burning (HB) spectroscopy and density functional theory (DFT) calculations revealed the presence of syn and anti isomers, where the methoxy (-OCH3) groups orient in opposite directions to each other. Picosecond UV-UV pump-probe spectroscopy revealed the NRD process from the excited singlet (S1 (1ππ*)) state occurs at a rate constant of ∼1010-1011 s-1, attributed to internal conversion (IC) to the 1nπ* state. Nanosecond UV-deep UV (DUV) pump-probe spectroscopy identified a transient triplet (T1 (3ππ*)) state, whose energy (from S0) and lifetime are 18 400 cm-1 and 20 ns, respectively. These results demonstrate that the photoisomerization of 2EH4MC includes multistep internal conversions and intersystem crossings, described as "S1 (trans, 1ππ*) → 1nπ* → T1 (3ππ*) → S0 (cis)".

5.
Phys Chem Chem Phys ; 21(36): 19755-19763, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31259349

RESUMO

The electronic states and photochemistry including nonradiative decay (NRD) and trans(E) → cis(Z) isomerization of methylcinnamate (MC) and its hydrogen-bonded complex with methanol have been investigated under jet-cooled conditions. S1(1nπ*) and S2(1ππ*) are directly observed in MC. This is the first direct observation of S1(1nπ*) in cinnamate derivatives. Surprisingly, the order of the energies between the nπ* and ππ* states is opposite to substituted cinnamates. TD-DFT and SAC-CI calculations support the observed result and show that the substitution to the benzene ring largely lowers the 1ππ* energy while the effect on 1nπ* is rather small. The S2(ππ*) state lifetime of MC is determined to be equal to or shorter than 10 ps, and the production of the transient T1 state is observed. The T1(ππ*) state is calculated to have a structure in which propenyl C[double bond, length as m-dash]C is twisted by 90°, suggesting the trans → cis isomerization proceeds via T1. The production of the cis isomer is confirmed by low-temperature matrix-isolated FTIR spectroscopy. The effect of H-bonding is examined for the MC-methanol complex. The S2 lifetime of MC-methanol is determined to be 180 ps, indicating that the H-bonding to the C[double bond, length as m-dash]O group largely prohibits the 1ππ* → 1nπ* internal conversion. This lifetime elongation in the methanol complex also describes well a higher fluorescence quantum yield of MC in methanol solution than in cyclohexane, while such a solvent dependence is not observed in para-substituted MC. Determination of the photochemical reaction pathways of MC and MC-methanol will help us to design photofunctional cinnamate derivatives.

6.
Phys Chem Chem Phys ; 20(26): 17583-17598, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29693100

RESUMO

An experimental and theoretical study has been carried out to elucidate the nonradiative decay (NRD) and trans(E) → cis(Z) isomerization from the S1 (1ππ*) state of structural isomers of hydroxy methylcinnamate (HMC); ortho-, meta- and para-HMC (o-, m- and p-HMC). A low temperature matrix-isolation Fourier Transform Infrared (FTIR) spectroscopic study revealed that all the HMCs are cis-isomerized upon UV irradiation. A variety of laser spectroscopic methods have been utilized for jet-cooled gas phase molecules to investigate the vibronic structure and lifetimes of the S1 state, and to detect the transient state appearing in the NRD process. In p-HMC, the zero-point level of the S1 state decays as quickly as 9 ps. A transient electronic state reported by Tan et al. (Faraday Discuss. 2013, 163, 321-340) was reinvestigated by nanosecond UV-tunable deep UV pump-probe spectroscopy and was assigned to the T1 state. For m- and o-HMC, the lifetime at the zero-point energy level of S1 is 10 ns and 6 ns, respectively, but it becomes substantially shorter at an excess energy higher than 1000 cm-1 and 600 cm-1, respectively, indicating the onset of NRD. Different from p-HMC, no transient state (T1) was observed in m- nor o-HMC. These experimental results are interpreted with the aid of TDDFT calculations by considering the excited-state reaction pathways and the radiative/nonradiative rate constants. It is concluded that in p-HMC, the trans → cis isomerization proceeds via a [trans-S1 → 1nπ* → T1 → cis-S0] scheme. On the other hand, in o- and m-HMC, the isomerization proceeds via a [trans-S1 → twisting along the C[double bond, length as m-dash]C double bond by 90° on S1 → cis-S0] scheme. The calculated barrier height along the twisting coordinate agrees well with the observed onset of the NRD channel for both o- and m-HMC.

7.
J Phys Chem Lett ; 7(19): 4001-4007, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27657500

RESUMO

The nonradiative decay pathways of jet-cooled para-methoxy methylcinnamate (p-MMC) and para-methoxy ethylcinnamate (p-MEC) have been investigated by picosecond pump-probe and nanosecond UV-Deep UV pump-probe spectroscopy. The possible relaxation pathways were calculated by the (time-dependent) density functional theory. We found that p-MMC and p-MEC at low excess energy undergo multistep intersystem crossing (ISC) from the bright S1 (1ππ*) state to the lowest triplet T1 (3ππ*) state via two competing pathways through the T2 state in the time scale of 100 ps: (a) stepwise ISC followed after the internal conversion (IC) from S1 to the dark 1nπ* state; (b) direct ISC from the S1 to T2 states. These picosecond multistep ISCs result in the torsion of C═C double bond by ∼95° in the T1 state, whose measured adiabatic energy and lifetime are 16577 cm-1 and ∼20 ns, respectively, for p-MMC. These results suggest that the ISC processes play an indispensable role in the photoprotecting sunscreens in natural plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA