Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1200770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745840

RESUMO

Introduction: The African Goat Improvement Network Image Collection Protocol (AGIN-ICP) is an accessible, easy to use, low-cost procedure to collect phenotypic data via digital images. The AGIN-ICP collects images to extract several phenotype measures including health status indicators (anemia status, age, and weight), body measurements, shapes, and coat color and pattern, from digital images taken with standard digital cameras or mobile devices. This strategy is to quickly survey, record, assess, analyze, and store these data for use in a wide variety of production and sampling conditions. Methods: The work was accomplished as part of the multinational African Goat Improvement Network (AGIN) collaborative and is presented here as a case study in the AGIN collaboration model and working directly with community-based breeding programs (CBBP). It was iteratively developed and tested over 3 years, in 12 countries with over 12,000 images taken. Results and discussion: The AGIN-ICP development is described, and field implementation and the quality of the resulting images for use in image analysis and phenotypic data extraction are iteratively assessed. Digital body measures were validated using the PreciseEdge Image Segmentation Algorithm (PE-ISA) and software showing strong manual to digital body measure Pearson correlation coefficients of height, length, and girth measures (0.931, 0.943, 0.893) respectively. It is critical to note that while none of the very detailed tasks in the AGIN-ICP described here is difficult, every single one of them is even easier to accidentally omit, and the impact of such a mistake could render a sample image, a sampling day's images, or even an entire sampling trip's images difficult or unusable for extracting digital phenotypes. Coupled with tissue sampling and genomic testing, it may be useful in the effort to identify and conserve important animal genetic resources and in CBBP genetic improvement programs by providing reliably measured phenotypes with modest cost. Potential users include farmers, animal husbandry officials, veterinarians, regional government or other public health officials, researchers, and others. Based on these results, a final AGIN-ICP is presented, optimizing the costs, ease, and speed of field implementation of the collection method without compromising the quality of the image data collection.

2.
PLoS One ; 17(10): e0275821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36227957

RESUMO

Computer vision is a tool that could provide livestock producers with digital body measures and records that are important for animal health and production, namely body height and length, and chest girth. However, to build these tools, the scarcity of labeled training data sets with uniform images (pose, lighting) that also represent real-world livestock can be a challenge. Collecting images in a standard way, with manual image labeling is the gold standard to create such training data, but the time and cost can be prohibitive. We introduce the PreciseEdge image segmentation algorithm to address these issues by employing a standard image collection protocol with a semi-automated image labeling method, and a highly precise image segmentation for automated body measurement extraction directly from each image. These elements, from image collection to extraction are designed to work together to yield values highly correlated to real-world body measurements. PreciseEdge adds a brief preprocessing step inspired by chromakey to a modified GrabCut procedure to generate image masks for data extraction (body measurements) directly from the images. Three hundred RGB (red, green, blue) image samples were collected uniformly per the African Goat Improvement Network Image Collection Protocol (AGIN-ICP), which prescribes camera distance, poses, a blue backdrop, and a custom AGIN-ICP calibration sign. Images were taken in natural settings outdoors and in barns under high and low light, using a Ricoh digital camera producing JPG images (converted to PNG prior to processing). The rear and side AGIN-ICP poses were used for this study. PreciseEdge and GrabCut image segmentation methods were compared for differences in user input required to segment the images. The initial bounding box image output was captured for visual comparison. Automated digital body measurements extracted were compared to manual measures for each method. Both methods allow additional optional refinement (mouse strokes) to aid the segmentation algorithm. These optional mouse strokes were captured automatically and compared. Stroke count distributions for both methods were not normally distributed per Kolmogorov-Smirnov tests. Non-parametric Wilcoxon tests showed the distributions were different (p< 0.001) and the GrabCut stroke count was significantly higher (p = 5.115 e-49), with a mean of 577.08 (std 248.45) versus 221.57 (std 149.45) with PreciseEdge. Digital body measures were highly correlated to manual height, length, and girth measures, (0.931, 0.943, 0.893) for PreciseEdge and (0.936, 0. 944, 0.869) for GrabCut (Pearson correlation coefficient). PreciseEdge image segmentation allowed for masks yielding accurate digital body measurements highly correlated to manual, real-world measurements with over 38% less user input for an efficient, reliable, non-invasive alternative to livestock hand-held direct measuring tools.


Assuntos
Gado , Infecções Sexualmente Transmissíveis , Algoritmos , Animais , Processamento de Imagem Assistida por Computador/métodos , Camundongos
3.
APL Bioeng ; 5(1): 011505, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33644628

RESUMO

Biological processes are incredibly complex-integrating molecular signaling networks involved in multicellular communication and function, thus maintaining homeostasis. Dysfunction of these processes can result in the disruption of homeostasis, leading to the development of several disease processes including atherosclerosis. We have significantly advanced our understanding of bioprocesses in atherosclerosis, and in doing so, we are beginning to appreciate the complexities, intricacies, and heterogeneity atherosclerosi. We are also now better equipped to acquire, store, and process the vast amount of biological data needed to shed light on the biological circuitry involved. Such data can be analyzed within machine learning frameworks to better tease out such complex relationships. Indeed, there has been an increasing number of studies applying machine learning methods for patient risk stratification based on comorbidities, multi-modality image processing, and biomarker discovery pertaining to atherosclerotic plaque formation. Here, we focus on current applications of machine learning to provide insight into atherosclerotic plaque formation and better understand atherosclerotic plaque progression in patients with cardiovascular disease.

4.
Neural Netw ; 12(3): 519-526, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12662693

RESUMO

A simple means of differentiating between syntactic and statistical pattern recognition is that, while both deal with feature sets, syntactic methods also include relationships among the features. In this paper we describe a pulse-coupled neural network (PCNN), which operates syntactically to produce icons that are ideal for statistical pattern recognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA