Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 565(7741): 640-644, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700871

RESUMO

Denisova Cave in the Siberian Altai (Russia) is a key site for understanding the complex relationships between hominin groups that inhabited Eurasia in the Middle and Late Pleistocene epoch. DNA sequenced from human remains found at this site has revealed the presence of a hitherto unknown hominin group, the Denisovans1,2, and high-coverage genomes from both Neanderthal and Denisovan fossils provide evidence for admixture between these two populations3. Determining the age of these fossils is important if we are to understand the nature of hominin interaction, and aspects of their cultural and subsistence adaptations. Here we present 50 radiocarbon determinations from the late Middle and Upper Palaeolithic layers of the site. We also report three direct dates for hominin fragments and obtain a mitochondrial DNA sequence for one of them. We apply a Bayesian age modelling approach that combines chronometric (radiocarbon, uranium series and optical ages), stratigraphic and genetic data to calculate probabilistically the age of the human fossils at the site. Our modelled estimate for the age of the oldest Denisovan fossil suggests that this group was present at the site as early as 195,000 years ago (at 95.4% probability). All Neanderthal fossils-as well as Denisova 11, the daughter of a Neanderthal and a Denisovan4-date to between 80,000 and 140,000 years ago. The youngest Denisovan dates to 52,000-76,000 years ago. Direct radiocarbon dating of Upper Palaeolithic tooth pendants and bone points yielded the earliest evidence for the production of these artefacts in northern Eurasia, between 43,000 and 49,000 calibrated years before present (taken as AD 1950). On the basis of current archaeological evidence, it may be assumed that these artefacts are associated with the Denisovan population. It is not currently possible to determine whether anatomically modern humans were involved in their production, as modern-human fossil and genetic evidence of such antiquity has not yet been identified in the Altai region.


Assuntos
Cavernas , Fósseis , Hominidae , Datação Radiométrica , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Cervos , Fêmur/química , Sedimentos Geológicos/química , História Antiga , Hominidae/genética , Humanos , Homem de Neandertal/genética , Isótopos de Oxigênio , Sibéria , Fatores de Tempo , Dente/química
2.
Nat Ecol Evol ; 2(5): 800-809, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29632352

RESUMO

Understanding the timing and character of the expansion of Homo sapiens out of Africa is critical for inferring the colonization and admixture processes that underpin global population history. It has been argued that dispersal out of Africa had an early phase, particularly ~130-90 thousand years ago (ka), that reached only the East Mediterranean Levant, and a later phase, ~60-50 ka, that extended across the diverse environments of Eurasia to Sahul. However, recent findings from East Asia and Sahul challenge this model. Here we show that H. sapiens was in the Arabian Peninsula before 85 ka. We describe the Al Wusta-1 (AW-1) intermediate phalanx from the site of Al Wusta in the Nefud desert, Saudi Arabia. AW-1 is the oldest directly dated fossil of our species outside Africa and the Levant. The palaeoenvironmental context of Al Wusta demonstrates that H. sapiens using Middle Palaeolithic stone tools dispersed into Arabia during a phase of increased precipitation driven by orbital forcing, in association with a primarily African fauna. A Bayesian model incorporating independent chronometric age estimates indicates a chronology for Al Wusta of ~95-86 ka, which we correlate with a humid episode in the later part of Marine Isotope Stage 5 known from various regional records. Al Wusta shows that early dispersals were more spatially and temporally extensive than previously thought. Early H. sapiens dispersals out of Africa were not limited to winter rainfall-fed Levantine Mediterranean woodlands immediately adjacent to Africa, but extended deep into the semi-arid grasslands of Arabia, facilitated by periods of enhanced monsoonal rainfall.


Assuntos
Fósseis , Migração Humana , Arqueologia , Meio Ambiente , Humanos , Arábia Saudita
3.
Science ; 359(6374): 456-459, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371468

RESUMO

To date, the earliest modern human fossils found outside of Africa are dated to around 90,000 to 120,000 years ago at the Levantine sites of Skhul and Qafzeh. A maxilla and associated dentition recently discovered at Misliya Cave, Israel, was dated to 177,000 to 194,000 years ago, suggesting that members of the Homo sapiens clade left Africa earlier than previously thought. This finding changes our view on modern human dispersal and is consistent with recent genetic studies, which have posited the possibility of an earlier dispersal of Homo sapiens around 220,000 years ago. The Misliya maxilla is associated with full-fledged Levallois technology in the Levant, suggesting that the emergence of this technology is linked to the appearance of Homo sapiens in the region, as has been documented in Africa.


Assuntos
Evolução Biológica , Migração Humana/história , África , Cavernas , Dentição , Fósseis , História Antiga , Humanos , Israel , Maxila , Tecnologia/história
4.
J Hum Evol ; 93: 109-19, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27086059

RESUMO

In 1964, a human humerus was found in a sedimentary deposit in Lezetxiki Cave (Basque Country, northern Iberia). The first studies on the stratigraphy, associated mammal faunal remains and lithic implements placed the deposits containing the humerus into the Riss glacial stage. Direct chronometric evidence has so far been missing, and the previous chronostratigraphic framework and faunal dating gave inconsistent results. Here we report laser ablation U-series analyses on the humerus yielding a minimum age of 164 ± 9 ka, corresponding to MIS 6. This is the only direct dating analysis of the Lezetxiki humerus and confirms a Middle Pleistocene age for this hominin fossil. Morphometric analyses suggest that the Lezetxiki humerus has close affinities to other Middle Pleistocene archaic hominins, such as those from La Sima de los Huesos at Atapuerca. This emphasizes the significance of the Lezetxiki fossil within the populations that predate the Neanderthals in south-western Europe. It is thus an important key fossil for the understanding of human evolution in Europe during the Middle Pleistocene, a time period when a great morphological diversity is observed but whose phylogenetic meaning is not yet fully understood.


Assuntos
Fósseis , Datação Radiométrica , Evolução Biológica , Cavernas , Humanos , Úmero , Espanha
5.
J Hum Evol ; 66: 39-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24331954

RESUMO

The 1950s excavations by Charles McBurney in the Haua Fteah, a large karstic cave on the coast of northeast Libya, revealed a deep sequence of human occupation. Most subsequent research on North African prehistory refers to his discoveries and interpretations, but the chronology of its archaeological and geological sequences has been based on very early age determinations. This paper reports on the initial results of a comprehensive multi-method dating program undertaken as part of new work at the site, involving radiocarbon dating of charcoal, land snails and marine shell, cryptotephra investigations, optically stimulated luminescence (OSL) dating of sediments, and electron spin resonance (ESR) dating of tooth enamel. The dating samples were collected from the newly exposed and cleaned faces of the upper 7.5 m of the ∼14.0 m-deep McBurney trench, which contain six of the seven major cultural phases that he identified. Despite problems of sediment transport and reworking, using a Bayesian statistical model the new dating program establishes a robust framework for the five major lithostratigraphic units identified in the stratigraphic succession, and for the major cultural units. The age of two anatomically modern human mandibles found by McBurney in Layer XXXIII near the base of his Levalloiso-Mousterian phase can now be estimated to between 73 and 65 ka (thousands of years ago) at the 95.4% confidence level, within Marine Isotope Stage (MIS) 4. McBurney's Layer XXV, associated with Upper Palaeolithic Dabban blade industries, has a clear stratigraphic relationship with Campanian Ignimbrite tephra. Microlithic Oranian technologies developed following the climax of the Last Glacial Maximum and the more microlithic Capsian in the Younger Dryas. Neolithic pottery and perhaps domestic livestock were used in the cave from the mid Holocene but there is no certain evidence for plant cultivation until the Graeco-Roman period.


Assuntos
Arqueologia , Cavernas , Cronologia como Assunto , Teorema de Bayes , Espectroscopia de Ressonância de Spin Eletrônica , Fósseis , Sedimentos Geológicos/análise , Humanos , Medições Luminescentes , Datação Radiométrica
6.
Toxicol Sci ; 118(1): 140-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20705894

RESUMO

Metal oxide nanoparticles are commonly used in personal-care formulations as protective agents against exposure to ultraviolet radiation. Although previous research has concluded that nanoparticles do not penetrate healthy skin, it remains contentious whether this conclusion holds under normal conditions of sunscreen use. Humans (n = 20) were exposed to sunscreens containing zinc oxide (ZnO) particles to determine if Zn from the particles was absorbed through skin over five consecutive days under outdoor conditions. Two sunscreens were tested-"nano sunscreen" containing 19-nm nanoparticles and "bulk sunscreen" containing > 100-nm particles. Venous blood and urine samples were collected 8 days before exposure, twice daily during the trial, and 6 days post-exposure. As the first application in nanotechnology studies, stable isotope tracing was used where the ZnO, enriched to > 99% with the stable isotope (68)Zn, allowed dermally absorbed zinc to be distinguished from naturally occurring zinc. The overwhelming majority of applied (68)Zn was not absorbed, although blood and urine samples from all subjects exhibited small increases in levels of tracer (68)Zn. The amount of tracer detected in blood after the 5-day application period was ∼1/1000 th that of total Zn in the blood compartment. Tracer levels in blood continued to increase beyond the 5-day application phase in contrast to those in urine. Levels of (68)Zn in blood and urine from females receiving the nano sunscreen appeared to be higher than males receiving the same treatment and higher than all subjects receiving the bulk sunscreen. It is not known whether (68)Zn has been absorbed as ZnO particles or soluble Zn or both.


Assuntos
Protetores Solares/farmacocinética , Óxido de Zinco/farmacocinética , Zinco/farmacocinética , Adulto , Idoso , Feminino , Humanos , Masculino , Nanopartículas Metálicas/análise , Pessoa de Meia-Idade , Tamanho da Partícula , Absorção Cutânea , Protetores Solares/análise , Adulto Jovem , Zinco/análise , Isótopos de Zinco , Óxido de Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA