Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sci Rep ; 12(1): 22359, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572746

RESUMO

Novel insecticides are urgently needed to control insecticide-resistant populations of Anopheles malaria vectors. Broflanilide acts as a non-competitive antagonist of the gamma-aminobutyric acid receptor and has shown prolonged effectiveness as an indoor residual spraying product (VECTRON T500) in experimental hut trials against pyrethroid-resistant vector populations. This multi-centre study expanded upon initial discriminating concentration testing of broflanilide, using six Anopheles insectary colonies (An. gambiae Kisumu KCMUCo, An. gambiae Kisumu NIMR, An. arabiensis KGB, An. arabiensis SENN, An. coluzzii N'Gousso and An. stephensi SK), representing major malaria vector species, to facilitate prospective susceptibility monitoring of this new insecticide; and investigated the potential for cross-resistance to broflanilide via the A296S mutation associated with dieldrin resistance (rdl). Across all vector species tested, the discriminating concentration for broflanilide ranged between LC99 × 2 = 1.126-54.00 µg/ml or LC95 × 3 = 0.7437-17.82 µg/ml. Lower concentrations of broflanilide were required to induce complete mortality of An. arabiensis SENN (dieldrin-resistant), compared to its susceptible counterpart, An. arabiensis KGB, and there was no association between the presence of the rdl mechanism of resistance and survival in broflanilide bioassays, demonstrating a lack of cross-resistance to broflanilide. Study findings provide a benchmark for broflanilide susceptibility monitoring as part of ongoing VECTRON T500 community trials in Tanzania and Benin.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Inseticidas/farmacologia , Anopheles/genética , Dieldrin/farmacologia , Estudos Prospectivos , Saúde Pública , Resistência a Inseticidas/genética , Mosquitos Vetores , Malária/prevenção & controle , Piretrinas/farmacologia , Controle de Mosquitos
2.
Insects ; 13(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35735860

RESUMO

Indoor residual spraying (IRS) has changed little since its introduction in the 1940s. Manual spraying is still prone to variation in insecticide dose. To improve the application of IRS in experimental hut trials, an automated track sprayer was developed, which regulates the speed of application and the distance of the nozzle from the wall, two key sources of variation. The automated track sprayer was compared to manual spraying, firstly using fluorescein solution in controlled indoor settings, and secondly in experimental huts in Tanzania using several IRS products. Manual spraying produced greater variation with both fluorescein and insecticide applications. Both manual and automated spray methods under-dosed the actual dose sprayed compared to the target dose. Overall, the track sprayer treats surfaces more consistently, offering a potential improvement over manual spraying for experimental hut evaluation of new IRS formulations.

3.
BMC Infect Dis ; 22(1): 171, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189830

RESUMO

BACKGROUND: Indoor residual spraying (IRS) is a major method of malaria vector control across sub-Saharan Africa. Effective control is being undermined by the rapid spread of insecticide resistance. There is major investment in development of new insecticides for IRS that possess novel modes of action, long residual activity, low mammalian toxicity and minimal cross-resistance. VECTRON™ T500, a new IRS product containing the active ingredient broflanilide as a 50% wettable powder (WP), has been shown to be efficacious against pyrethroid susceptible and resistant vector species on mud and concrete substrates in experimental hut (Phase II) trials. METHODS: A two-arm non-inferiority cluster randomized controlled trial (Phase III) will be undertaken in Muheza District, Tanga Region, Tanzania. VECTRON™ T500 will be compared to the IRS product Fludora® Fusion (clothianidin 50% WP + deltamethrin 6.25% WP). The predominant malaria vectors in the study area are pyrethroid-resistant Anopheles gambiae s.s., An. arabiensis and An. funestus s.s. Sixteen village clusters will be pair-matched on baseline vector densities and allocated to reference and intervention arms. Consenting households in the intervention arm will be sprayed with VECTRON™ T500 and those in the reference arm will be sprayed with Fludora® Fusion. Each month, CDC light traps will collect mosquitoes to estimate changes in vector density, indoor biting, sporozoite and entomological inoculation rates (EIR). Susceptibility to IRS active ingredients will be assessed using World Health Organisation (WHO) bottle bioassays. Target site and metabolic resistance mechanisms will be characterised among Anopheles field populations from both trial arms. Residual efficacy of both IRS products will be monitored for 12 months post intervention. Questionnaire and focus group discussions will explore factors that influence adherence, adverse effects and benefits of IRS. DISCUSSION: This protocol describes a large-scale non-inferiority evaluation of a novel IRS product to reduce the density and EIR of pyrethroid-resistant Anopheles vectors. If VECTRON™ T500 proves non-inferior to Fludora® Fusion, it will be considered as an additional vector control product for malaria prevention and insecticide resistance management. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05150808, registered on 26 November 2021. Retrospectively registered.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Benzamidas , Fluorocarbonos , Humanos , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores , Piretrinas/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Tanzânia
4.
PLoS One ; 16(3): e0248026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33657179

RESUMO

Novel chemistry for vector control is urgently needed to counter insecticide resistance in mosquitoes. Here a new meta-diamide insecticide, broflanilide (TENEBENALTM), was evaluated in East African experimental huts in Moshi, northern Tanzania. Two consecutive experimental hut trials with broflanilide 50WP were conducted; the first evaluating the efficacy of three concentrations, 50 mg/m2, 100 mg/m2, and 200 mg/m2 using a prototype formulation, and the second trial evaluating an improved formulation. The IRS treatments were applied on both mud and concrete surfaces and efficacy was monitored over time. The mortality, blood-feeding inhibition and exiting behaviour of free-flying wild mosquitoes was compared between treatment arms. Additionally, cone assays with pyrethroid-susceptible and resistant mosquito strains were conducted in the huts to determine residual efficacy. The first trial showed a dosage-mortality response of the prototype formulation and 3-8 months of residual activity, with longer activity on concrete than mud. The second trial with an improved formulation showed prolonged residual efficacy of the 100 mg/m2 concentration to 5-6 months on mud, and mosquito mortality on the concrete surface ranged between 94-100% for the full duration of the trial. In both trials, results with free-flying, wild Anopheles arabiensis echoed the mortality trend shown in cone assays, with the highest dose inducing the highest mortality and the improved formulation showing increased mortality rates. No blood-feeding inhibition or insecticide-induced exiting effects were observed with broflanilide. Broflanilide 50WP was effective against both susceptible and pyrethroid-resistant mosquito strains, demonstrating an absence of cross resistance between broflanilide and pyrethroids. The improved formulation, which has now been branded VECTRONTM T500, resulted in a prolonged residual efficacy. These results indicate the potential of this insecticide as an addition to the arsenal of IRS products needed to maintain both control of malaria and resistance management of malaria-transmitting mosquitoes.


Assuntos
Anopheles/efeitos dos fármacos , Benzamidas/toxicidade , Inseticidas/toxicidade , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Piretrinas/toxicidade , Animais , Humanos , Resistência a Inseticidas/efeitos dos fármacos , Malária/epidemiologia , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos/métodos , Tanzânia/epidemiologia
6.
Sci Rep ; 9(1): 7770, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123317

RESUMO

In The Gambia, metal-roof houses were hotter during the day than thatched-roof houses. After 24 h, the mortality of Anopheles gambiae, the principal African malaria vector, was 38% higher in metal-roof houses than thatched ones. During the day, mosquitoes in metal-roof houses moved from the hot roof to cooler places near the floor, where the temperature was still high, reaching 35 °C. In laboratory studies, at 35 °C few mosquitoes survived 10 days, the minimum period required for malaria parasite development. Analysis of epidemiological data showed there was less malaria and lower vector survival rates in Gambian villages with a higher proportion of metal roofs. Our findings are consistent with the hypothesis that the indoor climate of metal-roof houses, with higher temperatures and lower humidity, reduces survivorship of indoor-resting mosquitoes and may have contributed to the observed reduction in malaria burden in parts of sub-Saharan Africa.


Assuntos
Anopheles/parasitologia , Habitação , Malária/transmissão , Controle de Mosquitos/métodos , Temperatura , África Subsaariana , Animais , Humanos , Mosquitos Vetores/parasitologia , População Rural
7.
Malar J ; 16(1): 156, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28427415

RESUMO

BACKGROUND: Resistance of malaria vectors to pyrethroid insecticides has been attributed to selection pressure from long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), and the use of chemicals in agriculture. The use of different classes of insecticides in combination or by rotation has been recommended for resistance management. The aim of this study was to understand the role of IRS with a carbamate insecticide in management of pyrethroid resistance. METHODS: Anopheles mosquitoes were collected from multiple sites in nine districts of Uganda (up to five sites per district). Three districts had been sprayed with bendiocarb. Phenotypic resistance was determined using standard susceptibility tests. Molecular assays were used to determine the frequency of resistance mutations. The kdr L1014S homozygote frequency in Anopheles gambiae s.s. was used as the outcome measure to test the effects of various factors using a logistic regression model. Bendiocarb coverage, annual rainfall, altitude, mosquito collection method, LLIN use, LLINs distributed in the previous 5 years, household use of agricultural pesticides, and malaria prevalence in children 2-9 years old were entered as explanatory variables. RESULTS: Tests with pyrethroid insecticides showed resistance and suspected resistance levels in all districts except Apac (a sprayed district). Bendiocarb resistance was not detected in sprayed sites, but was confirmed in one unsprayed site (Soroti). Anopheles gambiae s.s. collected from areas sprayed with bendiocarb had significantly less kdr homozygosity than those collected from unsprayed areas. Mosquitoes collected indoors as adults had significantly higher frequency of kdr homozygotes than mosquitoes collected as larvae, possibly indicating selective sampling of resistant adults, presumably due to exposure to insecticides inside houses that would disproportionately affect susceptible mosquitoes. The effect of LLIN use on kdr homozygosity was significantly modified by annual rainfall. In areas receiving high rainfall, LLIN use was associated with increased kdr homozygosity and this association weakened as rainfall decreased, indicating more frequency of exposure to pyrethroids in relatively wet areas with high vector density. CONCLUSION: This study suggests that using a carbamate insecticide for IRS in areas with high levels of pyrethroid resistance may reduce kdr frequencies in An. gambiae s.s.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Mutação de Sentido Incorreto , Fenilcarbamatos/farmacologia , Proteínas de Protozoários/genética , Seleção Genética , Animais , Anopheles/genética , Bioensaio , Feminino , Frequência do Gene , Técnicas de Genotipagem , Humanos , Masculino , Uganda
8.
BMC Med Res Methodol ; 16: 29, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26956373

RESUMO

BACKGROUND: Clustering commonly affects the uncertainty of parameter estimates in epidemiological studies. Cluster-robust variance estimates (CRVE) are used to construct confidence intervals that account for single-level clustering, and are easily implemented in standard software. When data are clustered at more than one level (e.g. village and household) the level for the CRVE must be chosen. CRVE are consistent when used at the higher level of clustering (village), but since there are fewer clusters at the higher level, and consistency is an asymptotic property, there may be circumstances under which coverage is better from lower- rather than higher-level CRVE. Here we assess the relative importance of adjusting for clustering at the higher and lower level in a logistic regression model. METHODS: We performed a simulation study in which the coverage of 95 % confidence intervals was compared between adjustments at the higher and lower levels. RESULTS: Confidence intervals adjusted for the higher level of clustering had coverage close to 95 %, even when there were few clusters, provided that the intra-cluster correlation of the predictor was less than 0.5 for models with a single predictor and less than 0.2 for models with multiple predictors. CONCLUSIONS: When there are multiple levels of clustering it is generally preferable to use confidence intervals that account for the highest level of clustering. This only fails if there are few clusters at this level and the intra-cluster correlation of the predictor is high.


Assuntos
Análise por Conglomerados , Simulação por Computador , Malária/epidemiologia , Modelos Estatísticos , Criança , Pré-Escolar , Feminino , Gâmbia/epidemiologia , Humanos , Incidência , Lactente , Modelos Logísticos , Malária/prevenção & controle , Masculino , Programas de Rastreamento/métodos , Sensibilidade e Especificidade , Reino Unido/epidemiologia
9.
Arch Public Health ; 74: 56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28042474

RESUMO

BACKGROUND: Universal coverage of long-lasting insecticidal nets (LNs) made from polyester or polyethylene fibres has been adopted as the standard of care to control malaria among at-risk populations. To obtain a WHO recommendation, LNs must undergo prospective monitoring of insecticidal efficacy against mosquito vectors over 3 years of household use. The retention of bioefficacy and physical durability of a LN is influenced by net usage practices, textile polymer material and insecticide treatment technology. Fabric durability is the critical factor which determines the interval required between LN replacement campaigns. To investigate factors known to affect LN durability and bioefficacy, we describe a three-arm WHO Pesticide Evaluation Scheme (WHOPES) Phase III evaluation of a LN made uniquely from polypropylene (LifeNet®, Bayer CropScience) compared to standard LNs made from polyester and polyethylene, all treated with deltamethrin, over 3 years of use. METHODS: This is a prospective three-arm household randomized, equivalence trial of LNs in Tanzania, with nets as the unit of observation. Equal numbers of houses will be randomized to receive deltamethrin-treated polypropylene, polyester or polyethylene LNs; all sleeping spaces in a given household will be provided with one type of net. Bioefficacy (insecticidal activity against mosquitoes), insecticide content of net fibres, and fabric integrity (number, location and size of holes) will be measured every 6 months, using WHO cone or tunnel bioassays, chemical analysis and calculation of hole index, respectively. A cohort of LNs will be surveyed annually to assess survivorship (median LN survival time) and cumulative loss of fabric integrity. Field durability outcomes will be compared with laboratory strength tests. DISCUSSION: This is the first trial to compare the relative durability of three LNs each made from a different textile polymer, treated with the same insecticide, in the same community side-by-side over 3 years of use. Trial findings will 1) guide global health organizations on procurement policy and the type of textile polymer which maximizes the interval between LN replacement campaigns, and 2) stimulate manufacturers to improve product performance and development of longer lasting polymers. A full WHO recommendation may be granted to LifeNet® upon successful Phase III completion.

10.
Malar J ; 14: 337, 2015 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337671

RESUMO

BACKGROUND: Scale-up of malaria interventions seems to have contributed to a decline in the disease but other factors may also have had some role. Understanding changes in transmission and determinant factors will help to adapt control strategies accordingly. METHODS: Four sites in Ethiopia and Uganda were set up to monitor epidemiological changes and effectiveness of interventions over time. Here, results of a survey during the peak transmission season of 2012 are reported, which will be used as baseline for subsequent surveys and may support adaptation of control strategies. Data on malariometric and entomological variables, socio-economic status (SES) and control coverage were collected. RESULTS: Malaria prevalence varied from 1.4 % in Guba (Ethiopia) to 9.9 % in Butemba (Uganda). The most dominant species was Plasmodium vivax in Ethiopia and Plasmodium falciparum in Uganda. The majority of human-vector contact occurred indoors in Uganda, ranging from 83 % (Anopheles funestus sensu lato) to 93 % (Anopheles gambiae s.l.), which is an important factor for the effectiveness of insecticide-treated nets (ITNs) or indoor residual spraying (IRS). High kdr-L1014S (resistance genotype) frequency was observed in A. gambiae sensu stricto in Uganda. Too few mosquitoes were collected in Ethiopia, so it was not possible to assess vector habits and insecticide resistance levels. ITN ownership did not vary by SES and 56-98 % and 68-78 % of households owned at least one ITN in Ethiopia and Uganda, respectively. In Uganda, 7 % of nets were purchased by households, but the nets were untreated. In three of the four sites, 69-76 % of people with access to ITNs used them. IRS coverage ranged from 84 to 96 % in the three sprayed sites. Half of febrile children in Uganda and three-quarters in Ethiopia for whom treatment was sought received diagnostic tests. High levels of child undernutrition were detected in both countries carrying important implications on child development. In Uganda, 7-8 % of pregnant women took the recommended minimum three doses of intermittent preventive treatment. CONCLUSION: Malaria epidemiology seems to be changing compared to earlier published data, and it is essential to have more data to understand how much of the changes are attributable to interventions and other factors. Regular monitoring will help to better interpret changes, identify determinants, modify strategies and improve targeting to address transmission heterogeneity.


Assuntos
Malária , Adolescente , Adulto , Anemia , Animais , Anopheles , Criança , Pré-Escolar , Estudos Transversais , Etiópia/epidemiologia , Feminino , Febre , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Lactente , Recém-Nascido , Insetos Vetores , Inseticidas , Malária/epidemiologia , Malária/prevenção & controle , Malária/transmissão , Masculino , Desnutrição , Controle de Mosquitos , Plasmodium falciparum , Plasmodium vivax , Gravidez , Complicações na Gravidez , Prevalência , Uganda/epidemiologia , Adulto Jovem
11.
Malar J ; 14: 225, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-26025026

RESUMO

BACKGROUND: Insecticide-treated nets are the primary method of preventing malaria. To remain effective, the pyrethroid insecticide must withstand multiple washes over the lifetime of the net. ICON(®) Maxx is a 'dip-it-yourself' kit for long-lasting treatment of polyester nets. The twin-sachet kit contains a slow-release capsule suspension of lambda-cyhalothrin plus binding agent. To determine whether ICON Maxx meets the standards required by the World Health Organization Pesticide Evaluation Scheme (WHOPES), the efficacy and wash fastness of ICON Maxx was evaluated against wild, free-flying anopheline mosquitoes. METHODS: ICON Maxx was subjected to bioassay evaluation and experimental hut trial against pyrethroid-susceptible Anopheles gambiae, Anopheles arabiensis and Anopheles funestus. Mosquito mortality, blood feeding inhibition and personal protection were compared between untreated nets, conventional lambda-cyhalothrin treated nets (CTN) washed either four times (cut-off threshold) or 20 times, and ICON Maxx-treated nets either unwashed or washed 20 times. RESULTS: In bioassay, ICON Maxx demonstrated superior wash resistance to the CTN. In the experimental hut trial, ICON Maxx killed 75 % of An. funestus, 71 % of An. gambiae and 47 % of An. arabiensis when unwashed and 58, 66 and 42 %, respectively, when 20 times washed. The CTN killed 52 % of An. funestus, 33 % of An. gambiae and 30 % of An. arabiensis when washed to the cut-off threshold of four washes and 40, 40 and 36 %, respectively, when 20 times washed. Percentage mortality with ICON Maxx 20 times washed was similar (An. funestus) or significantly higher (An. gambiae, An. arabiensis) than with CTN washed to the WHOPES cut-off threshold. Blood-feeding inhibition with ICON Maxx 20 times washed was similar to the CTN washed to cut-off for all three species. Personal protection was significantly higher with ICON Maxx 20 times washed (66-79 %) than with CTN washed to cut-off (48-60 %). CONCLUSIONS: Nets treated with ICON Maxx and washed 20 times met the approval criteria set by WHOPES for Phase II trials in terms of mortality and blood-feeding inhibition. This finding raises the prospect of conventional polyester nets and other materials being made long-lastingly insecticidal through simple dipping in community or home, and thus represents a major advance over conventional pyrethroid treatments.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/métodos , Nitrilas , Piretrinas , Animais , Feminino , Tanzânia
12.
PLoS One ; 8(12): e84168, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367638

RESUMO

BACKGROUND: Attractive toxic sugar bait (ATSB) sprayed onto vegetation has been successful in controlling Anopheles mosquitoes outdoors. Indoor application of ATSB has yet to be explored. The purpose of this study was to determine whether ATSB stations positioned indoors have the potential to kill host-seeking mosquitoes and constitute a new approach to control of mosquito-borne diseases. METHODS: Insecticides were mixed with dyed sugar solution and tested as toxic baits against Anopheles arabiensis, An. Gambiae s.s. and Culex quinquefasciatus in feeding bioassay tests to identify suitable attractant-insecticide combinations. The most promising ATSB candidates were then trialed in experimental huts in Moshi, Tanzania. ATSB stations were hung in huts next to untreated mosquito nets occupied by human volunteers. The proportions of mosquitoes killed in huts with ATSB treatments relative to huts with non-insecticide control treatments huts were recorded, noting evidence of dye in mosquito abdomens. RESULTS: In feeding bioassays, chlorfenapyr 0.5% v/v, boric acid 2% w/v, and tolfenpyrad 1% v/v, mixed in a guava juice-based bait, each killed more than 90% of pyrethroid-susceptible An. Gambiae s.s. and pyrethroid-resistant An. arabiensis and Cx. quinquefasciatus. In the hut trial, mortality rates of the three ATSB treatments ranged from 41-48% against An. arabiensis and 36-43% against Cx. quinquefasciatus and all were significantly greater than the control mortalities: 18% for An. arabiensis, 7% for Cx. quinquefasciatus (p<0.05). Mortality rates with ATSB were comparable to those with long lasting insecticidal nets previously tested against the same species in this area. CONCLUSIONS: Indoor ATSB shows promise as a supplement to mosquito nets for controlling mosquitoes. Indoor ATSB constitute a novel application method for insecticide classes that act as stomach poisons and have not hitherto been exploited for mosquito control. Combined with LLIN, indoor use of ATSB has the potential to serve as a strategy for managing insecticide resistance.


Assuntos
Anopheles , Carboidratos/toxicidade , Culex , Resistência a Inseticidas , Controle de Mosquitos/métodos , Mosquiteiros , Piretrinas , Adulto , Animais , Bioensaio , Carboidratos/química , Feminino , Habitação , Humanos , Laboratórios , Masculino , Controle de Mosquitos/instrumentação
13.
PLoS One ; 8(6): e65787, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762425

RESUMO

Malaria prevalence remains high in many African countries despite massive scaling-up of insecticide treated nets (ITN) and indoor residual spraying (IRS). This paper evaluates the protective effect of pyrethroid IRS and ITNs in relation to risk factors for malaria based on a study conducted in North-West Tanzania, where IRS has been conducted since 2007 and universal coverage of ITNs has been carried out recently. In 2011 community-based cross-sectional surveys were conducted in the two main malaria transmission periods that occur after the short and long rainy seasons. These included 5,152 and 4,325 children aged 0.5-14 years, respectively. Data on IRS and ITN coverage, household demographics and socio-economic status were collected using an adapted version of the Malaria Indicator Survey. Children were screened for malaria by rapid diagnostic test. In the second survey, haemoglobin density was measured and filter paper blood spots were collected to determine age-specific sero-prevalence in each community surveyed. Plasmodium falciparum infection prevalence in children 0.5-14 years old was 9.3% (95%CI:5.9-14.5) and 22.8% (95%CI:17.3-29.4) in the two surveys. Risk factors for infection after the short rains included households not being sprayed (OR = 0.39; 95%CI:0.20-0.75); low community net ownership (OR = 0.45; 95%CI:0.21-0.95); and low community SES (least poor vs. poorest tertile: OR = 0.13, 95%CI:0.05-0.34). Risk factors after the long rains included household poverty (per quintile increase: OR = 0.89; 95%CI:0.82-0.97) and community poverty (least poor vs. poorest tertile: OR = 0.26, 95%CI:0.15-0.44); household IRS or high community ITN ownership were not protective. Despite high IRS coverage and equitable LLIN distribution, poverty was an important risk factor for malaria suggesting it could be beneficial to target additional malaria control activities to poor households and communities. High malaria prevalence in some clusters and the limited protection given by pyrethroid IRS and LLINs suggest that it may be necessary to enhance established vector control activities and consider additional interventions.


Assuntos
Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Inseticidas/toxicidade , Malária Falciparum/economia , Malária Falciparum/epidemiologia , Adolescente , Criança , Pré-Escolar , Análise por Conglomerados , Características da Família , Feminino , Inquéritos Epidemiológicos , Humanos , Lactente , Malária Falciparum/parasitologia , Masculino , Controle de Mosquitos/estatística & dados numéricos , Plasmodium falciparum/fisiologia , Prevalência , Fatores de Risco , Fatores Socioeconômicos , Tanzânia/epidemiologia
14.
Parasit Vectors ; 6(1): 296, 2013 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-24499488

RESUMO

BACKGROUND: Long lasting insecticidal nets (LN) are a primary method of malaria prevention. Before new types of LN are approved they need to meet quality and efficacy standards set by the WHO Pesticide Evaluation Scheme. The process of evaluation has three phases. In Phase I the candidate LN must meet threshold bioassay criteria after 20 standardized washes. In Phase II washed and unwashed LNs are evaluated in experimental huts against wild, free flying anopheline mosquitoes. In Phase III the LN are distributed to households in malaria endemic areas, sampled over three years of use and tested for continuing insecticidal efficacy. Interceptor LN (BASF Corporation, Germany) is made of polyester netting coated with a wash resistant formulation of alpha-cypermethrin. METHODS: Interceptor LN was subjected to bioassay evaluation and then to experimental hut trial against pyrethroid-susceptible Anopheles gambiae and An. funestus and resistant Culex quinquefasciatus. Mosquito mortality, blood feeding inhibition and personal protection were compared between untreated nets, conventional alpha-cypermethrin treated nets (CTN) washed 20 times and LNs washed 0, 20 and 30 times. RESULTS: In Phase I Interceptor LN demonstrated superior wash resistance and efficacy to the CTN. In the Phase II hut trial the LN killed 92% of female An. gambiae when unwashed and 76% when washed 20 times; the CTN washed 20 times killed 44%. The LN out-performed the CTN in personal protection and blood-feeding inhibition. The trend for An. funestus was similar to An. gambiae for all outcomes. Few pyrethroid-resistant Cx. quinquefasciatus were killed and yet the level of personal protection (75-90%) against Culex was similar to that of susceptible An. gambiae (76-80%) even after 20 washes. This protection is relevant because Cx. quinquefasciatus is a vector of lymphatic filariasis in East Africa. After 20 washes and 60 nights' use the LN retained 27% of its initial insecticide dose. CONCLUSIONS: Interceptor LN meets the approval criteria set by WHO and is recommended for use in disease control against East African vectors of malaria and filariasis. Some constraints associated with the phase II evaluation criteria, in particular the washing procedure, are critically reviewed.


Assuntos
Anopheles/fisiologia , Culex/fisiologia , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Animais , Bioensaio , Comportamento Alimentar/efeitos dos fármacos , Feminino , Humanos , Malária/prevenção & controle , Análise de Sobrevida , Tanzânia
15.
Malar J ; 11: 273, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22882836

RESUMO

BACKGROUND: Insecticide-treated nets (ITN) are one of the most effective measures for preventing malaria. Mass distribution campaigns are being used to rapidly increase net coverage in at-risk populations. This study had two purposes: to evaluate the impact of a universal coverage campaign (UCC) of long-lasting insecticidal nets (LLINs) on LLIN ownership and usage, and to identify factors that may be associated with inadequate coverage. METHODS: In 2011 two cross-sectional household surveys were conducted in 50 clusters in Muleba district, north-west Tanzania. Prior to the UCC 3,246 households were surveyed and 2,499 afterwards. Data on bed net ownership and usage, demographics of household members and household characteristics including factors related to socio-economic status were gathered, using an adapted version of the standard Malaria Indicator Survey. Specific questions relating to the UCC process were asked. RESULTS: The proportion of households with at least one ITN increased from 62.6% (95% Confidence Interval (CI) = 60.9-64.2) before the UCC to 90.8% (95% CI = 89.0-92.3) afterwards. ITN usage in all residents rose from 40.8% to 55.7%. After the UCC 58.4% (95% CI = 54.7-62.1) of households had sufficient ITNs to cover all their sleeping places. Households with children under five years (OR = 2.4, 95% CI = 1.9-2.9) and small households (OR = 1.9, 95% CI = 1.5-2.4) were most likely to reach universal coverage. Poverty was not associated with net coverage. Eighty percent of households surveyed received LLINs from the campaign. CONCLUSIONS: The UCC in Muleba district of Tanzania was equitable, greatly improving LLIN ownership and, more moderately, usage. However, the goal of universal coverage in terms of the adequate provision of nets was not achieved. Multiple, continuous delivery systems and education activities are required to maintain and improve bed net ownership and usage.


Assuntos
Pesquisa sobre Serviços de Saúde , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária/prevenção & controle , Controle de Mosquitos/métodos , Cobertura Universal do Seguro de Saúde , Adolescente , Adulto , Criança , Pré-Escolar , Estudos Transversais , Características da Família , Feminino , Humanos , Lactente , Masculino , Propriedade/estatística & dados numéricos , Gravidez , População Rural , Tanzânia
16.
Malar J ; 11: 87, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22449130

RESUMO

BACKGROUND: Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. RESULTS: Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. CONCLUSIONS: Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy.


Assuntos
Anopheles , Beauveria/fisiologia , Agentes de Controle Biológico , Comportamento Alimentar/fisiologia , Insetos Vetores , Metarhizium/fisiologia , Controle de Mosquitos , Animais , Anopheles/microbiologia , Anopheles/fisiologia , Feminino , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Mosquiteiros Tratados com Inseticida , Malária/transmissão , Análise de Sobrevida , Tanzânia
17.
Malar J ; 10: 98, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21507217

RESUMO

BACKGROUND: Understanding the factors which determine a household's or individual's risk of malaria infection is important for targeting control interventions at all intensities of transmission. Malaria ecology in Tanzania appears to have reduced over recent years. This study investigated potential risk factors and clustering in face of changing infection dynamics. METHODS: Household survey data were collected in villages of rural Muheza district. Children aged between six months and thirteen years were tested for presence of malaria parasites using microscopy. A multivariable logistic regression model was constructed to identify significant risk factors for children. Geographical information systems combined with global positioning data and spatial scan statistic analysis were used to identify clusters of malaria. RESULTS: Using an insecticide-treated mosquito net of any type proved to be highly protective against malaria (OR 0.75, 95% CI 0.59-0.96). Children aged five to thirteen years were at higher risk of having malaria than those aged under five years (OR 1.71, 95% CI 1.01-2.91). The odds of malaria were less for females when compared to males (OR 0.62, 95% CI 0.39-0.98). Two spatial clusters of significantly increased malaria risk were identified in two out of five villages. CONCLUSIONS: This study provides evidence that recent declines in malaria transmission and prevalence may shift the age groups at risk of malaria infection to older children. Risk factor analysis provides support for universal coverage and targeting of long-lasting insecticide-treated nets (LLINs) to all age groups. Clustering of cases indicates heterogeneity of risk. Improved targeting of LLINs or additional supplementary control interventions to high risk clusters may improve outcomes and efficiency as malaria transmission continues to fall under intensified control.


Assuntos
Mosquiteiros Tratados com Inseticida , Malária Falciparum/epidemiologia , Plasmodium falciparum/isolamento & purificação , Fatores Etários , Criança , Pré-Escolar , Análise por Conglomerados , Características da Família , Feminino , Sistemas de Informação Geográfica , Inquéritos Epidemiológicos , Humanos , Lactente , Modelos Logísticos , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Masculino , Análise Multivariada , Prevalência , Fatores de Risco , Tanzânia/epidemiologia
18.
Parasitol Res ; 108(2): 317-22, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20872014

RESUMO

Physiological characteristics of insects can influence their susceptibility to fungal infection of which age and nutritional status are among the most important. An understanding of host-pathogen interaction with respect to these physiological characteristics of the host is essential if we are to develop fungal formulations capable of reducing malaria transmission under field conditions. Here, two independent bioassays were conducted to study the effect of age and blood-feeding status on fungal infection and survival of Anopheles gambiae s.s. Giles. Mosquitoes were exposed to 2 × 10(10) conidia m(-2) of oil-formulated Metarhizium anisopliae ICIPE-30 and of Beauveria bassiana I93-825, respectively, and their survival was monitored daily. Three age groups of mosquitoes were exposed, 2-4, 5-8, and 9-12 days since emergence. Five groups of different feeding status were exposed: non-blood-fed, 3, 12, 36, and 72 h post-blood feeding. Fungal infection reduced the survival of mosquitoes regardless of their age and blood-feeding status. Although older mosquitoes died relatively earlier than younger ones, age did not tend to affect mosquito susceptibility to fungal infection. Non-blood-fed mosquitoes were more susceptible to fungus infection compared to all categories of blood-fed mosquitoes, except for those exposed to B. bassiana 72 h post-blood feeding. In conclusion, formulations of M. anisopliae and B. bassiana can equally affect mosquitoes of different age classes, with them being relatively more susceptible to fungus infection when non-blood-fed.


Assuntos
Anopheles/microbiologia , Beauveria/patogenicidade , Metarhizium/patogenicidade , Controle Biológico de Vetores/métodos , Envelhecimento/imunologia , Animais , Anopheles/imunologia , Beauveria/imunologia , Suscetibilidade a Doenças/imunologia , Comportamento Alimentar/fisiologia , Feminino , Interações Hospedeiro-Patógeno , Insetos Vetores/microbiologia , Longevidade , Metarhizium/imunologia , Esporos Fúngicos/patogenicidade
19.
Am J Trop Med Hyg ; 83(5): 965-72, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21036822

RESUMO

The social acceptability and durability of two house screening interventions were addressed using focus group discussions, questionnaires, indoor climate measurements, and durability surveys. Participants recognized that screening stopped mosquitoes (79-96%) and other insects (86-98%) entering their houses. These and other benefits were appreciated by significantly more recipients of full screening than users of screened ceilings. Full screened houses were 0.26°C hotter at night (P = 0.05) than houses with screened ceilings and 0.51°C (P < 0.001) hotter than houses with no screening (28.43°C), though only 9% of full screened house users and 17% of screened ceiling users complained about the heat. Although 71% of screened doors and 85% of ceilings had suffered some damage after 12 months, the average number of holes of any size was < 5 for doors and < 7 for ceilings. In conclusion, house screening is a well-appreciated and durable vector control tool.


Assuntos
Anemia/prevenção & controle , Habitação/normas , Malária Falciparum/prevenção & controle , Controle de Mosquitos/instrumentação , Controle de Mosquitos/métodos , Anemia/epidemiologia , Anemia/etiologia , Animais , Criança , Grupos Focais , Gâmbia/epidemiologia , Humanos , Inseticidas/farmacologia , Malária Falciparum/complicações , Malária Falciparum/epidemiologia , Plasmodium falciparum , Características de Residência , População Rural , Inquéritos e Questionários , Temperatura
20.
Malar J ; 9: 246, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20799967

RESUMO

BACKGROUND: Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed. METHODS: The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510) (2 × 10(10) conidia m(-2)) applied on mud panels (simulating walls of traditional Tanzanian houses), black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily. RESULTS: All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p < 0.001). Mosquitoes exposed to B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14), and a higher risk than those exposed to treated polyester netting (p < 0.001). Residual activity of fungi declined over time; however, conidia remained pathogenic at 28 d post application, and were able to infect and kill 73 - 82% of mosquitoes within 14 d. CONCLUSION: Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field.


Assuntos
Anopheles/microbiologia , Beauveria/patogenicidade , Metarhizium/patogenicidade , Controle de Mosquitos/métodos , Animais , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA