Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559701

RESUMO

As a result of this research, it was established that the chlorine atom replacement rates in hexa-chlorocyclotriphosphazene by o-, m-, and p-methylanilines' temperatures are crucial in determining which reaction is made. The speed of reaction practically does not affect the polarity of the synthesis solvent. For the formation of fully substituted o-, m-, and p-arilaminocyclotriphosphazenes, the reaction takes 5 h and is carried out in the diglyme at its boiling temperature. The structure of the synthesized AAP was confirmed by 31P and 1H NMR spectroscopy and MALDI-TOF mass spectrometry. By means of synchronous DSK and TGA, it is found that the synthesized AAP are crystalline and their thermal destruction has a stepped character. Thermal destruction is shown to be accompanied by the simultaneous removal of three aniline molecules from the AAP molecules. Conducted curing of epoxy resin DER-331 is carried out using the AAP as a curing agent. It has been established that due to steric difficulties, o- AAP does not interact with epoxy resin, unlike m- and p- AAP. The gel fraction in curing resin is measured, and the AAP relate to the stage processes of macromolecule formation. The result is that polymers based on DER-331 and m-, p-AAP have a gel fraction content up to 97 mass. %. These polymers have glass-transition temperatures 80 and 85 °C (m- and p-AAP-based, respectively) and demonstrate fire resistance to standard UL-94 of category V-0.

2.
Polymers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365541

RESUMO

Organophosphazenes are of interest due to the combination of increased mechanical and thermal properties of polymer materials obtained with their use, however, they are characterized by a complex multi-stage synthesis. Moreover, the high viscosity of phosphazene-containing epoxy resins (PhER) makes their processing difficult. To simplify the synthesis of PhER, a one-step method was developed, and bisphenol F was chosen, which also provided a decrease in viscosity. In the current study, PhER were formed by a one-stage interaction of hexachlorocyclotriphosphazene (HCP) with bisphenol F isomers and epichlorohydrin in the presence of alkali, which was a mixture of epoxycyclophosphazenes (ECPh) with a functionality from 1 to 4 according to the results of MALDI-TOF analysis. Conventional epoxy resins based on bisphenol F, also formed during the process, showed high mechanical properties and glass transition temperature, and the reactivity of the obtained resins is similar to the base epoxy resins based on bisphenols A and F. Cured PhER had higher or the same mechanical properties compared to base epoxy resins based on bisphenol A and F, and a glass transition temperature comparable to base epoxy resins based on bisphenol F: glass transition temperature (Tg) up to 174.5 °C, tensile strength up to 74.5 MPa, tensile modulus up to 2050 MPa, tensile elongation at break up to 6.22%, flexural strength up to 146.6 MPa, flexural modulus up to 3630 MPa, flexural elongation at break up to 9.15%, and Izod impact strength up to 4.01 kJ/m2. Analysis of the composition of the obtained PhER was carried out by 1H and 31P NMR spectroscopy, MALDI-TOF mass spectrometry, X-ray fluorescence elemental analysis, and contained up to 3.9% phosphorus and from 1.3% to 4.2% chlorine. The temperature profile of the viscosity of the resulting epoxy resins was determined, and the viscosity at 25 °C ranged from 20,000 to 450,000 Pa·s, depending on the ratio of reagents. The resins studied in this work can be cured with conventional curing agents and, with a low content of the phosphazene fraction, can act as modifiers for traditional epoxy resins, being compatible with them, to increase impact strength and elasticity while maintaining the rest of the main mechanical and processing properties, and can be used as a resin component for composite materials, adhesives, and paints.

3.
Polymers (Basel) ; 13(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34685247

RESUMO

This study reports on a series of crosslinked poly(arylene ether)s with POSS in the main chain. The fluorinated and terminated poly(arylene ether)s were first synthesized by the nucleophilic reaction of diphenol POSS and decafluorodiphenyl monomers, including decafluorobiphenyl, decaflurobenzophenone, and decafluorodiphenyl sulfone. They were then reacted with 3-hydroxyphenyl acetylene to produce phenylacetylene-terminated poly(arylene ether)s. The polymers were of excellent processability. When heated to a high temperature, the polymers converted into a crosslinked network, exhibiting a low range of dielectric constant from 2.17 to 2.58 at 1 HMz, strong resistance against chemical solutions, low dielectric losses, and good thermal and hydrophobic properties.

4.
Polymers (Basel) ; 13(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578010

RESUMO

This work is devoted to the influence of phosphazene modifiers with different substituents on the curing process, thermal properties and flammability of benzoxazine resin. Novel catalysts with m-toluidine substituents were introduced. The catalytic activity of studied phosphazene compounds decreased in the row: hexachlorocyclotriphosphazene (HCP) > tetra m-toluidine substituted phosphazene PN-mt (4) > hexa m-toluidine substituted phosphazene PN-mt (6) > hexaphenoxycyclotriphosphazene (HPP), where HPP is totally inactive. Two types of catalysis: basic and acid were proposed. A brief study of resulting properties of polybenzoxazines was presented. The addition of any studied modifier caused the decrease of glass transition temperature and thermal stability of polymers. The morphology of cured compositions was characterized by matrix-dispersion phase structure. All phosphazene containing polybenzoxazines demonstrated the improved flame resistance.

5.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073083

RESUMO

Despite a significant number of investigations in the field of phosphazene chemistry, the formation mechanism of this class of cyclic compounds is still poorly studied. At the same time, a thorough understanding of this process is necessary, both for the direct production of phosphazene rings of a given size and for the controlled cyclization reaction when it is secondary and undesirable. We synthesized a series of short linear phosphazene oligomers with the general formula Cl[PCl2=N]n-PCl3+PCl6- and studied their tendency to form cyclic structures under the influence of elevated temperatures or in the presence of nitrogen-containing agents, such as hexamethyldisilazane (HMDS) or ammonium chloride. It was established that linear oligophosphazenes are inert when heated in the absence of the mentioned cyclization agents, and the formation of cyclic products occurs only when these agents are involved in the process. The ability to obtain the desired size phosphazene cycle from corresponding linear chains is shown for the first time. Known obstacles, such as side interaction with the PCl6- counterion and a tendency of longer chains to undergo crosslinking elongation instead of cyclization are still relevant, and ways to overcome them are being discussed.


Assuntos
Compostos Organofosforados/síntese química , Cloreto de Amônio/química , Ciclização , Compostos de Organossilício/química
6.
Polymers (Basel) ; 13(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924847

RESUMO

To reveal the effect of chlorine substituents in the ring of aromatic amine on the synthesis process of benzoxazine monomer and on its polymerization ability, as well as to develop a fire-resistant material, a previously unreported benzoxazine monomer based on 3,3'-dichloro-4,4'-diaminodiphenylmethane was obtained in toluene and mixture toluene/isopropanol. The resulting benzoxazine monomers were thermally cured for 2 h at 180 °C, 4 h at 200 °C, 2 h at 220 °C. A comparison between the rheological, thermal and fire-resistant properties of the benzoxazines based on 3,3'-dichloro-4,4'-diaminodiphenylmethane and, for reference, 4,4'-diaminodimethylmethane was made. The effect of the reaction medium on the structure of the oligomeric fraction and the overall yield of the main product were studied and the toluene/ethanol mixture was found to provide the best conditions; however, in contrast to most known diamine-based benzoxazines, synthesis in the pure toluene is also possible. The synthesized monomers can be used as thermo- and fire-resistant binders for polymer composite materials, as well as hardeners for epoxy resins. Chlorine-containing polybenzoxazines require more severe conditions for polymerization but have better fire resistance.

7.
Polymers (Basel) ; 13(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477707

RESUMO

The influence of epoxycyclophosphazene modifier on the process of epoxy-amine curing was studied by differential scanning calorimetry (DSC). The study revealed that the curing process of epoxyphosphazene binders with 4'4'diaminodiphenylsulfone (DDS) provides more complete curing of the formulations in comparison with ones applying low molecular-weight polyamide curing agent (L-20). The isothermal kinetics of curing was described by means of model fitting and the isoconversional approach (Friedman method). Accurate n-order approximation was obtained for all systems under study. In particular, the 2-order equation fits well with the main part of curing excluding high degrees of conversion. The process of curing could be distinguished into three zones. The transition from zone 2 to zone 3 correlates with gelation. According to the isoconversional analysis by Friedman method, the diffusion-controlled mechanism is found at final stage of curing.

8.
Polymers (Basel) ; 13(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466828

RESUMO

A novel type of phosphazene containing an additive that acts both as a catalyst and as a flame retardant for benzoxazine binders is presented in this study. The synthesis of a derivative of hexachlorocyclotriphosphazene (HCP) and meta-toluidine was carried out in the medium of the latter, which made it possible to achieve the complete substitution of chlorine atoms in the initial HCP. Thermal and flammability characteristics of modified compositions were investigated. The modifier catalyzes the process of curing and shifts the beginning of reaction from 222.0 °C for pure benzoxazine to 205.9 °C for composition with 10 phr of modifier. The additive decreases the glass transition temperature of compositions. Achievement of the highest category of flame resistance (V-0 in accordance with UL-94) is ensured both by increasing the content of phenyl residues in the composition and by the synergistic effect of phosphorus and nitrogen. A brief study of the curing kinetics disclosed the complex nature of the reaction. An accurate two-step model is obtained using the extended Prout-Tompkins equation for both steps.

9.
Materials (Basel) ; 13(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322789

RESUMO

The influence of epoxyphosphazene-modifying additives on the features of the hot curing process of epoxy-amine composition was studied by the rotational viscometry method. The modification caused an acceleration of the curing process, changed rheokinetics of viscosity increase, especially the stage molecular mass growth of linear chains became almost twice shorter for composition with 30% modifier than for unmodified one. We suggest the reason for these changes is the polyfunctionality of epoxyphosphazene, which finally results in high-density network formation. In cold curing process the bulkiness of epoxyphosphazene molecule and the lack of heat for its motion results in incomplete cure. Thus, in order to cope with these difficulties hot curing systems were proposed and studied.

10.
Polymers (Basel) ; 12(6)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481501

RESUMO

With the aim of obtaining halogen-free polybenzoxazazines with reduced flammability, phosphazene-containing benzoxazines (PhBZ) were synthesized in a two-stage method. In the first stage of the reaction of hexachlorocycotriphosphazene with bisphenol A at molar ratios of 1:12, 1:16, and 1:24, respectively, mixtures of bisphenol and hydroxyaryloxycyclotriphosphazenes were obtained, which mainly contained P3N3[OC6H4C(CH3)3C6H4OH]6. In the second stage, when these mixtures interacted with aniline and an excess of paraformaldehyde in toluene at 80-90 °C, PhBZ containing 20-50% of the phosphazene component with Mw 1200-5800 were formed. According to 1H and 13C NMR spectroscopy, PhBZ contain a small amount of oligomeric compounds with Mannich aminomethylene bridges. With an increase of the content of the phosphazene component, the curing temperature of PhBZ decreases from 242 °C to 215 °C. Cured PhBZ samples with a phosphorus content of more than 1.5% have increased flammability resistance according to UL-94.

11.
Polymers (Basel) ; 11(12)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757068

RESUMO

Phosphazene-containing epoxy oligomers (PEO) were synthesized by the interaction of hexachlorocyclotriphosphazene (HCP), phenol, and bisphenol A in a medium of excess of epichlorohydrin using potassium carbonate and hydroxide as HCl acceptors with the aim of obtaining a product with lower viscosity and higher phosphazene content. PEOs are mixtures of epoxycyclophosphazene (ECP) and a conventional organic epoxy resin based on bisphenol A in an amount controlled by the ratio of the initial mono- and diphenol. According to 31P NMR spectroscopy, pentasubstituted aryloxycyclotrophosphazene compounds predominate in the ECP composition. The relative content in the ECP radicals of mono- and diphenol was determined by the MALDI-TOF mass spectrometry method. The organic epoxy fraction, according to gas chromatograpy-mass spectrometry (GC-MS), contains 50-70 wt % diglycidyl ether of bisphenol A. PEO resins obtained in the present work have reduced viscosity when compared to other known phosphazene-containging epoxy resins while phosphazene content is still about 50 wt %. Resins with an epoxy number within 12-17 wt %, are cured by conventional curing agents to form compositions with flame-retardant properties, while other characteristics of these compositions are at the level of conventional epoxy materials.

12.
Polymers (Basel) ; 11(4)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30960598

RESUMO

Phosphazene-containing epoxy-resorcinol oligomers (PERO) are synthesized in one stage with the direct interaction of hexachlorocyclotriphosphazene (HCP), resorcinol, and epichlorohydrin in the presence of solid NaOH. Depending on the initial ratio of HCP:resorcinol, PERO contains from 20 to 50 wt.% phosphazene component (2.0⁻4.8% of phosphorus) and have an epoxy group content up to 30 %. Products are characterized using ¹H and 31P NMR spectroscopy, MALDI-TOF mass spectrometry, and elemental analysis. According to mass spectrometry, the phosphazene fractions of PERO include up to 30 individual compounds with a predominance of cyclotriphosphazenes with one unsubstituted chlorine atom and four or five glycidyl groups. PERO has a lower viscosity in comparison with similar resins based on bisphenol A, which can simplify their use as a binder for polymer composites, adhesives, and paints.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA