Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(31): 21913-21921, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39058977

RESUMO

Cyanobacteria were the first microorganisms that released oxygen into the atmosphere billions of years ago. To do it safely under intense sunlight, they developed strategies that prevent photooxidation in the photosynthetic membrane, by regulating the light-harvesting activity of their antenna complexes-the phycobilisomes-via the orange-carotenoid protein (OCP). This water-soluble protein interacts with the phycobilisomes and triggers nonphotochemical quenching (NPQ), a mechanism that safely dissipates overexcitation in the membrane. To date, the mechanism of action of OCP in performing NPQ is unknown. In this work, we performed ultrafast spectroscopy on a minimal NPQ system composed of the active domain of OCP bound to the phycobilisome core. The use of this system allowed us to disentangle the signal of the carotenoid from that of the bilins. Our results demonstrate that the binding to the phycobilisomes modifies the structure of the ketocarotenoid associated with OCP. We show that this molecular switch activates NPQ, by enabling excitation-energy transfer from the antenna pigments to the ketocarotenoid.


Assuntos
Proteínas de Bactérias , Carotenoides , Cianobactérias , Ficobilissomas , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Cianobactérias/metabolismo , Cianobactérias/química , Ficobilissomas/química , Ficobilissomas/metabolismo , Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Processos Fotoquímicos
2.
Int J Biol Macromol ; 265(Pt 2): 131028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521321

RESUMO

Photodamage to the photosynthetic apparatus by excessive light radiation has led to the evolution of a variety of energy dissipation mechanisms. A mechanism that exists in some cyanobacterial species, enables non-photochemical quenching of excitation energy within the phycobilisome (PBS) antenna complex by the Orange Carotenoid Protein (OCP). The OCP contains an active N-terminal domain (NTD) and a regulatory C-terminal domain (CTD). Some cyanobacteria also have genes encoding for homologs to both the CTD (CTDH) and the NTD (referred to as helical carotenoid proteins, HCP). The CTDH facilitates uptake of carotenoids from the thylakoid membranes to be transferred to the HCPs. Holo-HCPs exhibit diverse functionalities such as carotenoid carriers, singlet oxygen quenchers, and in the case of HCP4, constitutive OCP-like energy quenching. Here, we present the first crystal structure of the holo-HCP4 binding canthaxanthin molecule and an improved structure of the apo-CTDH from Anabaena sp. PCC 7120. We propose here models of the binding of the HCP4 to the PBS and the associated energy quenching mechanism. Our results show that the presence of the carotenoid is essential for fluorescence quenching. We also examined interactions within OCP-like species, including HCP4 and CTDH, providing the basis for mechanisms of carotenoid transfer from CTDH to HCPs.


Assuntos
Anabaena , Cianobactérias , Proteínas de Bactérias/química , Carotenoides/química , Cianobactérias/metabolismo , Cantaxantina , Anabaena/metabolismo , Ficobilissomas/química
3.
Micromachines (Basel) ; 14(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37893308

RESUMO

Orange carotenoid protein (OCP) is a photochromic carotenoprotein involved in the photoprotection of cyanobacteria. It is activated by blue-green light to a red form OCPR capable of dissipating the excess of energy of the cyanobacterial photosynthetic light-harvesting systems. Activation to OCPR can also be achieved in the dark. In the present work, activation by pH changes of two different OCPs-containing echinenone or canthaxanthin as carotenoids-is investigated in different conditions. A particular emphasis is put on OCP encapsulated in SBA-15 mesoporous silica nanoparticles. It is known that in these hybrid systems, under appropriate conditions, OCP remains photoactive. Here, we show that when immobilised in SBA-15, the OCP visible spectrum is sensitive to pH changes, but such a colorimetric response is very different from the one observed for OCP in solution. In both cases (SBA-15 matrices and solutions), pH-induced colour changes are related either by orange-to-red OCP activation, or by carotenoid loss from the denatured protein. Of particular interest is the response of OCP in SBA-15 matrices, where a sudden change in the Vis absorption spectrum and in colour is observed for pH changing from 2 to 3 (in the case of canthaxanthin-binding OCP in SBA-15: λMAX shifts from 454 to 508 nm) and for pH changing from 3 to 4 (in the case of echinenone-binding OCP in SBA-15: λMAX shifts from 445 to 505 nm). The effect of temperature on OCP absorption spectrum and colour (in SBA-15 matrices) has also been investigated and found to be highly dependent on the properties of the used mesoporous silica matrix. Finally, we also show that simultaneous encapsulation in selected surface-functionalised SBA-15 nanoparticles of appropriate fluorophores makes it possible to develop OCP-based pH-sensitive fluorescent systems. This work therefore represents a proof of principle that OCP immobilised in mesoporous silica is a promising system in the development of colorimetric and fluorometric pH and temperature sensors.

4.
Photochem Photobiol Sci ; 22(6): 1379-1391, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36853495

RESUMO

Orange carotenoid protein (OCP) is a photoactive carotenoprotein involved in photoprotection of cyanobacteria, which uses a keto-catorenoid as a chromophore. When it absorbs blue-green light, it converts from an inactive OCPO orange form to an activated OCPR red form, the latter being able to bind the light-harvesting complexes facilitating thermal dissipation of the excess of absorbed light energy. Several research groups have focused their attention on the photoactivation mechanism, characterized by several steps, involving both carotenoid photophysics and protein conformational changes. Among the used techniques, time-resolved IR spectroscopy have the advantage of providing simultaneously information on both the chromophore and the protein, giving thereby the possibility to explore links between carotenoid dynamics and protein dynamics, leading to a better understanding of the mechanism. However, an appropriate interpretation of data requires previous assignment of marker IR bands, for both the carotenoid and the protein. To date, some assignments have concerned specific α-helices of the OCP backbone, but no specific marker band for the carotenoid was identified on solid ground. This paper provides evidence for the assignment of putative marker bands for three carotenoids bound in three different OCPs: 3'-hydroxyechineone (3'-hECN), echinenone (ECN), canthaxanthin (CAN). Light-induced FTIR difference spectra were recorded in H2O and D2O and compared with spectra of isolated carotenoids. The use of DFT calculations allowed to propose a description for the vibrations responsible of several IR bands. Interestingly, most bands are located at the same wavenumber for the three kinds of OCPs suggesting that the conformation of the three carotenoids is the same in the red and in the orange form. These results are discussed in the framework of recent time-resolved IR studies on OCP.


Assuntos
Proteínas de Bactérias , Cianobactérias , Proteínas de Bactérias/química , Vibração , Carotenoides/metabolismo , Cianobactérias/metabolismo , Espectrofotometria Infravermelho
5.
Biophys Rep (N Y) ; 2(3): 100072, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36425326

RESUMO

In all published photoactivation mechanisms of orange carotenoid protein (OCP), absorption of a single photon by the orange dark state starts a cascade of red-shifted OCP ground-state intermediates that subsequently decay within hundreds of milliseconds, resulting in the formation of the final red form OCPR, which is the biologically active form that plays a key role in cyanobacteria photoprotection. A major challenge in deducing the photoactivation mechanism is to create a uniform description explaining both single-pulse excitation experiments, involving single-photon absorption, and continuous light irradiation experiments, where the red-shifted OCP intermediate species may undergo re-excitation. We thus investigated photoactivation of Synechocystis OCP using stationary irradiation light with a biologically relevant photon flux density coupled with nanosecond laser pulse excitation. The kinetics of photoactivation upon continuous and nanosecond pulse irradiation light show that the OCPR formation quantum yield increases with photon flux density; thus, a simple single-photon model cannot describe the data recorded for OCP in vitro. The results strongly suggest a consecutive absorption of two photons involving a red intermediate with ≈100 millisecond lifetime. This intermediate is required in the photoactivation mechanism and formation of the red active form OCPR.

6.
Harmful Algae ; 117: 102285, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944963

RESUMO

Cyanobacterial blooms can modify the dynamic of aquatic ecosystems and have harmful consequences for human activities. Moreover, cyanobacteria can produce a variety of cyanotoxins, including microcystins, but little is known about the role of environmental factors on the prevalence of microcystin producers in the cyanobacterial bloom dynamics. This study aimed to better understand the success of Planktothrix in various environments by unveiling the variety of strategies governing cell responses to sudden changes in light intensity and temperature. The cellular responses (photosynthesis, photoprotection, heat shock response and metabolites synthesis) of four Planktothrix strains to high-light or high-temperature were studied, focusing on how distinct ecotypes (red- or green-pigmented) and microcystin production capability affect cyanobacteria's ability to cope with such abiotic stimuli. Our results showed that high-light and high-temperature impact different cellular processes and that Planktothrix responses are heterogeneous, specific to each strain and thus, to genotype. The ability of cyanobacteria to cope with sudden increase in light intensity and temperature was not related to red- or green-pigmented ecotype or microcystin production capability. According to our results, microcystin producers do not cope better to high-light or high-temperature and microcystin content does not increase in response to such stresses.


Assuntos
Cianobactérias , Planktothrix , Cianobactérias/fisiologia , Ecossistema , Genótipo , Humanos , Temperatura
7.
Biophys J ; 121(15): 2849-2872, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35794830

RESUMO

The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection by quenching of the excess of light-harvested energy. The photoactivation mechanism remains elusive, in part due to absence of data pertaining to the timescales over which protein structural changes take place. It also remains unclear whether or not oligomerization of the dark-adapted and light-adapted OCP could play a role in the regulation of its energy-quenching activity. Here, we probed photoinduced structural changes in OCP by a combination of static and time-resolved X-ray scattering and steady-state and transient optical spectroscopy in the visible range. Our results suggest that oligomerization partakes in regulation of the OCP photocycle, with different oligomers slowing down the overall thermal recovery of the dark-adapted state of OCP. They furthermore reveal that upon non-photoproductive excitation a numbed state forms, which remains in a non-photoexcitable structural state for at least ≈0.5 µs after absorption of a first photon.


Assuntos
Proteínas de Bactérias , Cianobactérias , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo
8.
JACS Au ; 2(5): 1084-1095, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647603

RESUMO

A substantial number of Orange Carotenoid Protein (OCP) studies have aimed to describe the evolution of singlet excited states leading to the formation of a photoactivated form, OCPR. The most recent one suggests that 3 ps-lived excited states are formed after the sub-100 fs decay of the initial S2 state. The S* state, which has the longest reported lifetime of a few to tens of picoseconds, is considered to be the precursor of the first red photoproduct P1. Here, we report the ultrafast photodynamics of the OCP from Synechocystis PCC 6803 carried out using visible-near infrared femtosecond time-resolved absorption spectroscopy as a function of the excitation pulse power and wavelength. We found that a carotenoid radical cation can form even at relatively low excitation power, obscuring the determination of photoactivation yields for P1. Moreover, the comparison of green (540 nm) and blue (470 nm) excitations revealed the existence of an hitherto uncharacterized excited state, denoted as S∼, living a few tens of picoseconds and formed only upon 470 nm excitation. Because neither the P1 quantum yield nor the photoactivation speed over hundreds of seconds vary under green and blue continuous irradiation, this S∼ species is unlikely to be involved in the photoactivation mechanism leading to OCPR. We also addressed the effect of His-tagging at the N- or C-termini on the excited-state photophysical properties. Differences in spectral signatures and lifetimes of the different excited states were observed at a variance with the usual assumption that His-tagging hardly influences protein dynamics and function. Altogether our results advocate for the careful consideration of the excitation power and His-tag position when comparing the photoactivation of different OCP variants and beg to revisit the notion that S* is the precursor of photoactivated OCPR.

9.
Biochim Biophys Acta Bioenerg ; 1863(7): 148584, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752265

RESUMO

The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection. Here, we report on the functional, spectral and structural characteristics of the peculiar Planktothrix PCC7805 OCP (Plankto-OCP). We show that this OCP variant is characterized by higher photoactivation and recovery rates, and a stronger energy-quenching activity, compared to other OCP studied thus far. We characterize the effect of the functionalizing carotenoid and of his-tagging on these reactions, and identify the time scales on which these modifications affect photoactivation. The presence of a his-tag at the C-terminus has a large influence on photoactivation, thermal recovery and PBS-fluorescence quenching, and likewise for the nature of the carotenoid that additionally affects the yield and characteristics of excited states and the ns-s dynamics of photoactivated OCP. By solving the structures of Plankto-OCP in the ECN- and CAN-functionalized states, each in two closely-related crystal forms, we further unveil the molecular breathing motions that animate Plankto-OCP at the monomer and dimer levels. We finally discuss the structural changes that could explain the peculiar properties of Plankto-OCP.


Assuntos
Cianobactérias , Planktothrix , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Cianobactérias/metabolismo , Fluorescência
10.
Plant Physiol ; 189(3): 1204-1219, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35512089

RESUMO

Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.


Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Adaptação Fisiológica , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA