Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 16(24): R1028-30, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17174908

RESUMO

The male-female dichotomy has evolved independently in nearly all lineages of multicellular organisms. Why this should be the case is still uncertain, but recent studies of mating-type genes in green algae open a promising new way to explore molecular-genetic aspects of the evolution of dichotomous sexes.


Assuntos
Proteínas de Algas/genética , Evolução Biológica , Chlamydomonas reinhardtii/fisiologia , Genes , Volvox/fisiologia , Proteínas de Algas/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Chlamydomonas reinhardtii/classificação , Chlamydomonas reinhardtii/genética , Filogenia , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Reprodução/genética , Volvox/classificação , Volvox/genética
3.
Bioessays ; 27(3): 299-310, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15714559

RESUMO

The volvocine algae provide an unrivalled opportunity to explore details of an evolutionary pathway leading from a unicellular ancestor to multicellular organisms with a division of labor between different cell types. Members of this monophyletic group of green flagellates range in complexity from unicellular Chlamydomonas through a series of extant organisms of intermediate size and complexity to Volvox, a genus of spherical organisms that have thousands of cells and a germ-soma division of labor. It is estimated that these organisms all shared a common ancestor about 50 +/- 20 MYA. Here we outline twelve important ways in which the developmental repertoire of an ancestral unicell similar to modern C. reinhardtii was modified to produce first a small colonial organism like Gonium that was capable of swimming directionally, then a sequence of larger organisms (such as Pandorina, Eudorina and Pleodorina) in which there was an increasing tendency to differentiate two cell types, and eventually Volvox carteri with its complete germ-soma division of labor.


Assuntos
Evolução Biológica , Divisão Celular/fisiologia , Animais , Chlamydomonas reinhardtii/classificação , Clorófitas/classificação , Clorófitas/ultraestrutura , Eucariotos/classificação , Filogenia
6.
Cell ; 113(6): 743-53, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12809605

RESUMO

In Volvox carteri adults, reproductive cells called gonidia are enclosed within a spherical monolayer of biflagellate somatic cells. Embryos must "invert" (turn inside out) to achieve this configuration, however, because at the end of cleavage the gonidia are on the outside and the flagellar ends of all somatic cells point inward. Generation of a bend region adequate to turn the embryo inside out involves a dramatic change in cell shape, plus cell movements. Here, we cloned a gene called invA that is essential for inversion and found that it codes for a kinesin localized in the cytoplasmic bridges that link all cells to their neighbors. In invA null mutants, cells change shape normally, but are unable to move relative to the cytoplasmic bridges. A normal bend region cannot be formed and inversion stops. We conclude that the InvA kinesin provides the motile force that normally drives inversion to completion.


Assuntos
Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Embrião não Mamífero , Cinesinas/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Sequência de Aminoácidos/genética , Sequência de Bases/genética , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Clorófitas/ultraestrutura , Elementos de DNA Transponíveis/genética , DNA Complementar/análise , DNA Complementar/genética , Embrião de Mamíferos/ultraestrutura , Junções Intercelulares/metabolismo , Cinesinas/genética , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Morfogênese/fisiologia , Mutação/genética , Proteínas de Plantas/genética
7.
Integr Comp Biol ; 43(2): 247-53, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21680429

RESUMO

Volvox and its relatives provide an exceptional model for integrative studies of the evolution of multicellularity and cellular differentiation. The volvocine algae range in complexity from unicellular Chlamydomonas through several colonial genera with a single cell type, to multicellular Volvox with its germ-soma division of labor. Within the monophyletic family Volvocaceae, several species of Volvox have evolved independently in different lineages, the ultimate cause presumably being the advantage that large size and cellular differentiation provide in competing for limiting resources such as phosphorous. The proximate causes of this type of evolutionary transition are being studied in V. carteri. All volvocine algae except Volvox exhibit biphasic development: cells grow during a motile, biflagellate phase, then they lose motility and divide repeatedly during the reproductive phase. In V. carteri three kinds of genes transform this ancestral biphasic program into a dichotomous one that generates non-motile reproductive cells and biflagellate somatic cells with no reproductive potential: first the gls genes act in early embryos to cause asymmetric division and production of large-small sister-cell pairs; then lag genes act in the large cells to repress the biflagellate half of the ancestral program, while regA acts in the small cells to repress the reproductive half of the program. Molecular-genetic analysis of these genes is progressing, as will be illustrated with regA, which encodes a transcription factor that acts in somatic cells to repress nuclear genes encoding chloroplast proteins. Repression of chloroplast biogenesis prevents these obligately photoautotrophic cells from growing, and since they cannot grow, they cannot reproduce.

8.
Genetics ; 162(4): 1617-30, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12524337

RESUMO

Retrotransposons play an important role in the evolution of genomic structure and function. Here we report on the characterization of a novel retrotransposon called kangaroo from the multicellular green alga, Volvox carteri. kangaroo elements are highly mobile and their expression is developmentally regulated. They probably integrate via double-stranded, closed-circle DNA intermediates through the action of an encoded recombinase related to the lambda-site-specific integrase. Phylogenetic analysis indicates that kangaroo elements are closely related to other unorthodox retrotransposons including PAT (from a nematode), DIRS-1 (from Dictyostelium), and DrDIRS1 (from zebrafish). PAT and kangaroo both contain split direct repeat (SDR) termini, and here we show that DIRS-1 and DrDIRS1 elements contain terminal features structurally related to SDRs. Thus, these mobile elements appear to define a third class of retrotransposons (the DIRS1 group) that are unified by common structural features, genes, and integration mechanisms, all of which differ from those of LTR and conventional non-LTR retrotransposons.


Assuntos
Clorófitas/genética , Retroelementos/genética , Sequência de Aminoácidos , Sequência de Bases , Clorófitas/crescimento & desenvolvimento , DNA Nucleotidiltransferases/genética , DNA Complementar/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Integrases/genética , Modelos Genéticos , Dados de Sequência Molecular , Recombinases , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA