Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(41): 19063-19073, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39350518

RESUMO

A combination of X-ray absorption and low-temperature electronic absorption spectroscopies has been used to probe the geometric and electronic structures of the human mitochondrial amidoxime reducing component enzyme (hmARC1) in the oxidized Mo(VI) and reduced Mo(IV) forms. Extended X-ray absorption fine structure analysis revealed that oxidized enzyme possesses a 5-coordinate [MoO2(SCys)(PDT)]- (PDT = pyranopterin dithiolene) active site with a cysteine coordinated to Mo. A 5-coordinate geometry is retained in the reduced state, with the equatorial oxo being protonated. Low-temperature electronic absorption spectroscopy of hmARC1 reveals a spectrum for the oxidized enzyme that is significantly different from what has been reported for sulfite oxidase family enzymes. Time-dependent density functional theory computations on oxidized and reduced hmARC1, and a small molecule analogue for hmARC1ox, have been used to assist us in making detailed band assignments and developing a greater understanding of enzyme electronic structure contributions to reactivity. Our understanding of the hmARCred HOMO and the LUMO of the benzamidoxime substrate reveal a potential π-bonding interaction between these redox orbitals, with two-electron occupation of the substrate LUMO along the reaction coordinate activating the O-N bond for cleavage and promoting oxygen atom transfer to the Mo site.


Assuntos
Teoria da Densidade Funcional , Sulfito Oxidase , Humanos , Sulfito Oxidase/química , Sulfito Oxidase/metabolismo , Oxirredução , Elétrons , Oxirredutases/química , Oxirredutases/metabolismo , Estrutura Molecular , Molibdênio/química , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares
2.
Inorg Chem ; 63(29): 13191-13196, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38984973

RESUMO

Mo K-edge X-ray absorption spectroscopy (XAS) is used to probe the structure of wild-type Campylobacter jejuni nitrate reductase NapA and the C176A variant. The results of extended X-ray absorption fine structure (EXAFS) experiments on wt NapA support an oxidized Mo(VI) hexacoordinate active site coordinated by a single terminal oxo donor, four sulfur atoms from two separate pyranopterin dithiolene ligands, and an additional S atom from a conserved cysteine amino acid residue. We found no evidence of a terminal sulfido ligand in wt NapA. EXAFS analysis shows the C176A active site to be a 6-coordinate structure, and this is supported by EPR studies on C176A and small molecule analogs of Mo(V) enzyme forms. The SCys is replaced by a hydroxide or water ligand in C176A, and we find no evidence of a coordinated sulfhydryl (SH) ligand. Kinetic studies show that this variant has completely lost its catalytic activity toward nitrate. Taken together, the results support a critical role for the conserved C176 in catalysis and an oxygen atom transfer mechanism for the catalytic reduction of nitrate to nitrite that does not employ a terminal sulfido ligand in the catalytic cycle.


Assuntos
Campylobacter jejuni , Domínio Catalítico , Nitrato Redutase , Campylobacter jejuni/enzimologia , Nitrato Redutase/química , Nitrato Redutase/metabolismo , Modelos Moleculares , Espectroscopia por Absorção de Raios X
3.
Inorg Chem ; 63(19): 8516-8520, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38667056

RESUMO

Related BAP [BAP = bis(acyl)phosphide] and Acac (Acac = ß-diketonate) molecules perform as robust supports for both lanthanide and actinide metals. Here, a molecular bimetallic Eu2+ complex was successfully targeted and isolated by employing sodium bis(mesitoyl)phosphide [Na(mesBAP)] in a salt metathesis with EuI2, producing [Eu(mesBAP)2(et2o)]2 (et2o = metal-coordinated diethyl ether). The corresponding Acac-Eu2+ complex was targeted using mesAcac- (1,3-dimesityl-1,3-propanedione), generating [Eu(mesAcac)2(et2o)]2. Both complexes were characterized by single-crystal X-ray diffraction, UV-vis, IR, and NMR spectroscopies, and variable-temperature magnetic susceptibility. [Eu(mesBAP)2(et2o)]2 was persistent under anaerobic, anhydrous conditions, whereas the analogous [Eu(mesAcac)2(et2o)]2 showed evidence of decomposition under identical conditions. Variable-temperature magnetic susceptibility and magnetization studies of [Eu(mesBAP)2(et2o)]2 and [Eu(mesAcac)2(et2o)]2 were performed, resulting in similar magnetic exchange coupling values of Jex = -0.018 and -0.023 cm-1 and axial zero-field-splitting D values of -0.38 and -0.51 cm-1, respectively.

4.
J Am Chem Soc ; 146(13): 9285-9292, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518125

RESUMO

Photoinduced electron spin polarization (ESP) is reported in the electronic ground states of three Pt(II) complexes comprised of two S = 1/2 nitronyl nitroxide (NN) radicals attached through different length para-phenylethynyl bridges to the 3,6 positions of a catecholate (CAT, donor) and 4,4'-di-tert-butyl-2,2'-bipyridine (bpy, acceptor). Complexes 1-3 have from 17 to 41 bonds separating NN radicals and display cw-EPR spectra consistent with |JNN-NN| ≫ |aN|, |JNN-NN| ≥ |aN|, and |JNN-NN| < |aN|, respectively, where JNN-NN is the magnetic exchange coupling between NN radicals in the electronic ground state, and aN is the isotropic 14N hyperfine coupling constant. Light-induced transient EPR spectra characterized as enhanced ground-state absorption were observed for all three complexes using 532 nm pulsed laser excitation into the ligand-to-ligand charge transfer (LL'CT) band of the (CAT)Pt(bpy) chromophore. The magnitude of the observed ESP increases in the order 1 < 2 < 3 and is inversely correlated with the magnitude of ground-state JNN-NN. In addition to the experimental observation of net absorptive polarization in 1-3, light excitation also produces multiplet polarization in 2. Since the weak dipolar coupling leads to a strong spectral overlap of the absorptive and emissive components, the multiplet polarization is not observed in 1 and 3 and is very weak in 2. The ability to spin-polarize multiple radical spins with a single photon is anticipated to advance new photoinduced multi qubit/qudit ESP protocols for quantum information science applications.

5.
Inorg Chem ; 63(14): 6493-6499, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38517353

RESUMO

The electronic structure of the bis(dioxolene) bridging ligand -SQ2Th2- is responsive to metal-ligand magnetic exchange coupling. Comparison of the crystal structure of (NiSQ)2Th2 to that of (ZnSQ)2Th2 indicates an open-shell biradical ground state for the dinuclear Ni(II) complex compared to the closed-shell quinoidal character found in the dinuclear Zn(II) complex. Consistent with a comparison of bond lengths obtained by X-ray diffraction, the analysis of the variable-temperature magnetic susceptibility data for crystalline (NiSQ)2Th2 yields reduced SQ-SQ radical-radical magnetic exchange coupling (JSQ-SQ = -203 cm-1) compared to that of (ZnSQ)2Th2 (JSQ-SQ = -321 cm-1). The reduced SQ-SQ exchange coupling in (NiSQ)2Th2 derives from an attenuation of the SQ spin densities, which in turn is derived from the Ni-SQ antiferromagnetic exchange interactions. This reduction in SQ--SQ exchange that we observe for (NiSQ)2Th2 correlates with an effective lengthening of the bridge unit by ∼2.1 Šrelative to that of (ZnSQ)2Th2. This magnitude of the effective increase in the bridge distance is consistent with the (NiSQ)2Th2 JSQ-SQ value lying between those of (ZnSQ)2Th2 and (ZnSQ)2Th3. The ability to modulate spin populations on an organic radical via pairwise Ni-SQ magnetic exchange interactions is a general way to affect electronic coupling in the Th-Th bridge. Our results suggest that metal-radical exchange coupling represents a powerful mechanism for tuning organic molecular electronic structure, with important implications for molecular electronics and molecular electron transport.

6.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005178

RESUMO

The pyranopterin dithiolene ligand is remarkable in terms of its geometric and electronic structure and is uniquely found in mononuclear molybdenum and tungsten enzymes. The pyranopterin dithiolene is found coordinated to the metal ion, deeply buried within the protein, and non-covalently attached to the protein via an extensive hydrogen bonding network that is enzyme-specific. However, the function of pyranopterin dithiolene in enzymatic catalysis has been difficult to determine. This focused account aims to provide an overview of what has been learned from the study of pyranopterin dithiolene model complexes of molybdenum and how these results relate to the enzyme systems. This work begins with a summary of what is known about the pyranopterin dithiolene ligand in the enzymes. We then introduce the development of inorganic small molecule complexes that model aspects of a coordinated pyranopterin dithiolene and discuss the results of detailed physical studies of the models by electronic absorption, resonance Raman, X-ray absorption and NMR spectroscopies, cyclic voltammetry, X-ray crystallography, and chemical reactivity.


Assuntos
Metaloproteínas , Molibdênio , Modelos Moleculares , Molibdênio/química , Ligantes , Metaloproteínas/química , Catálise , Coenzimas/química
7.
Chem Sci ; 14(43): 12264-12276, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969598

RESUMO

A series of oligothiophene bis(dioxolene) complexes, SQ-Thn-SQ (SQ = S = ½TpCum,MeZnII(3-tert-butyl-orthosemiquinonate); TpCum,Me = tris(5-cumenyl-3-methylpyrazolyl)borate anion) have been synthesized, structurally characterized, and studied as a function of the number of thiophene bridging units, n (n = 0-3) using a combination of variable-temperature (VT) electronic absorption and EPR spectroscopies, and VT magnetic susceptibility measurements. The thiophene bridge bond lengths determined by X-ray crystallography display dramatic differences across the SQ-Thn-SQ series. Bridge bond deviation values (Σ|Δi|) display a progressive change in the nature of the bridge fragment bonding as the number of thiophene groups increases, with quinoidal bridge character for n = 1 (SQ-Th-SQ) and biradical character with "aromatic" bridge bond lengths for n = 3 (SQ-Th3-SQ). Remarkably, for n = 2 (SQ-Th2-SQ) the nature of the bridge fragment is intermediate between quinoid and biradical aromatic, which we describe as having open-shell character as opposed to biradicaloid since the open-shell biradical configuration does not have the correct symmetry to mix with the quinoidal ground-state configuration. This bridge bonding character is reflected in the energies of the lowest lying open-shell states for these three molecules. The SQ-Th-SQ molecule is diamagnetic at all temperatures studied, and we provide evidence for SQ-SQ antiferromagnetic exchange coupling and population of triplet states in SQ-Th2-SQ and SQ-Th3-SQ, with JSQ-SQ(ave) = -279 cm-1 (VT EPR/electronic absorption/magnetic susceptibility) and JSQ-SQ = -117 cm-1 (VT EPR/electronic absorption/magnetic susceptibility), respectively. The results have been interpreted in the context of state configurational mixing within a simplified 4-electron, 3-orbital model that explicitly contains contributions of a bridge fragment. Variable-temperature spectroscopic- and magnetic susceptibility data are consistent with two low-lying open-shell states for SQ-Th3-SQ, but three low-lying states (one closed-shell and two open-shell) for SQ-Th2-SQ. This model provides a simple symmetry-based framework to understand the continuum of electronic and geometric structures of this class of molecules as a function of the number of thiophene units in the bridge.

8.
Chem Sci ; 14(36): 9689-9695, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736649

RESUMO

Photoinduced electron spin polarization (ESP) of a spin-½ organic radical (nitronyl nitroxide, NN) in a series of Pt(ii) complexes comprised of 4,4'-di-tert-butyl-2,2'-bipyridine (bpy) and 3-tert-butylcatecholate (CAT) ligands, where the CAT ligand is substituted with (CH3)n-meta-phenyl-NN (bridge-NN) groups, is presented and discussed. We show the importance of attenuating the energy gap between localized NN radical and chromophoric excited states to control both the magnitude and sign of the optically-generated ESP, and to provide deeper insight into the details of the ESP mechanism. Understanding electronic structure contributions to optically generated ESP will enhance our ability to control the nature of prepared states for a variety of quantum information science applications, where strong ESP facilitates enhanced sensitivity and readout capabilities at low applied magnetic fields and higher temperatures.

9.
Inorg Chem ; 62(14): 5315-5319, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36971376

RESUMO

X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data have been used to characterize the coordination environment for the catalytic Mo site of Escherichia coli YcbX in two different oxidation states. In the oxidized state, the Mo(VI) ion is coordinated by two terminal oxo ligands, a thiolate S atom from cysteine, and two S donors from the bidentate pyranopterin ene-1,2-dithiolate (pyranopterin dithiolene). Upon reduction, it is the more basic equatorial oxo ligand that is protonated, with a Mo-Oeq bond distance that is best described as either a short Mo4+-OH2 bond or a long Mo4+-OH bond. Mechanistic implications for substrate reduction are discussed in light of these structural details.


Assuntos
Escherichia coli , Molibdênio , Domínio Catalítico , Oxirredução , Molibdênio/química
10.
Inorg Chem ; 62(2): 739-747, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36598509

RESUMO

A new donor-acceptor biradical complex, TpCum,MeZn(SQ-VD) (TpCum,MeZn+ = zinc(II) hydro-tris(3-cumenyl-5-methylpyrazolyl)borate complex cation; SQ = orthosemiquinone; VD = oxoverdazyl), which is a ground-state analogue of a charge-separated excited state, has been synthesized and structurally characterized. The magnetic exchange interaction between the S = 1/2 SQ and the S = 1/2 VD within the SQ-VD biradical ligand is observed to be ferromagnetic, with JSQ-VD = +77 cm-1 (H = -2JSQ-VDŜSQ·ŜVD) determined from an analysis of the variable-temperature magnetic susceptibility data. The pairwise biradical exchange interaction in TpCum,MeZn(SQ-VD) can be compared with that of the related donor-acceptor biradical complex TpCum,MeZn(SQ-NN) (NN = nitronyl nitroxide, S = 1/2), where JSQ-NN ≅ +550 cm-1. This represents a dramatic reduction in the biradical exchange by a factor of ∼7, despite the isolobal nature of the VD and NN acceptor radical SOMOs. Computations assessing the magnitude of the exchange were performed using a broken-symmetry density functional theory (DFT) approach. These computations are in good agreement with those computed at the CASSCF NEVPT2 level, which also reveals an S = 1 triplet ground state as observed in the magnetic susceptibility measurements. A combination of electronic absorption spectroscopy and CASSCF computations has been used to elucidate the electronic origin of the large difference in the magnitude of the biradical exchange coupling between TpCum,MeZn(SQ-VD) and TpCum,MeZn(SQ-NN). A Valence Bond Configuration Interaction (VBCI) model was previously employed to highlight the importance of mixing an SQSOMO → NNLUMO charge transfer configuration into the electronic ground state to facilitate the stabilization of the high-spin triplet (S = 1) ground state in TpCum,MeZn(SQ-NN). Here, CASSCF computations confirm the importance of mixing the pendant radical (e.g., VD, NN) LUMO (VDLUMO and NNLUMO) with the SOMO of the SQ radical (SQSOMO) for stabilizing the triplet, in addition to spin polarization and charge transfer contributions to the exchange. An important electronic structure difference between TpCum,MeZn(SQ-VD) and TpCum,MeZn(SQ-NN), which leads to their different exchange couplings, is the reduced admixture of excited states that promote ferromagnetic exchange into the TpCum,MeZn(SQ-VD) ground state, and the intrinsically weaker mixing between the VDLUMO and the SQSOMO compared to that observed for TpCum,MeZn(SQ-NN), where this orbital mixing is significant. The results of this comparative study contribute to a greater understanding of biradical exchange interactions, which are important to our understanding of excited-state singlet-triplet energy gaps, electron delocalization, and the generation of electron spin polarization in both the ground and excited states of (bpy)Pt(CAT-radical) complexes.

11.
Dalton Trans ; 52(7): 1970-1976, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36691821

RESUMO

The synthesis and characterization of dinuclear ligand-to-ligand charge transfer complexes are described. Each complex is comprised of square-planar platinum(II) coordinated to a 3-tert-butyl-orthocatecholate donor and a 4,4'-di-tert-butyl-2,2'-bipyridine acceptor. Both complexes exhibit donor → acceptor ligand-to-ligand charge transfer (LL'CT) bands in the visible spectrum. The platinum complexes are covalently attached at the catecholate 5-position to either a meta- or para-phenylene bridge fragment. Both cyclic voltammetry and electronic absorption spectroscopy exhibit features characteristic of intramolecular interaction between the platinum centres. The LL'CT excited state lifetimes are ∼twofold longer than the mononuclear parent complex. The properties of these complexes are discussed and compared to similar complexes in the literature.

12.
J Am Chem Soc ; 144(46): 21005-21009, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36373855

RESUMO

Transient electron paramagnetic resonance spectroscopy has been used to probe photoinduced electron spin polarization of a stable exchange-coupled organic biradical in a Pt(II) complex comprising 4,4'-di-tert-butyl-2,2'-bipyridine (bpy) and 3,6-bis(ethynyl-para-phenyl-nitronyl nitroxide)-o-catecholate (CAT(o-C≡C-Ph-NN)2). Photoexcitation results in four unpaired spins in excited states of this complex, with spins being localized on each of the two radicals, CAT•+ and bpy•-. The four spins are all exchange-coupled in these excited states, and an off-diagonal matrix element in the CAT•+-NN exchange allows for exchange-enhanced intersystem crossing to the 3T1a state, which possesses (bpy•-)Pt(CAT•+) chromophoric triplet character. Fast mixing between this 3T1a state and thermally accessible excited LL'CT state(s) followed by fast relaxation provides spin polarization of the exchange-coupled NN radicals in the 3S0 ground state of the complex. Our results demonstrate that well-defined quantum states of a ground-state biradical can be initialized with single-photon excitation and have the potential for further spin manipulation directed toward quantum information science applications.

13.
Inorg Chem ; 61(46): 18466-18475, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36331515

RESUMO

A series of bis(acyl)phosphide-supported Eu complexes were synthesized (bis(acyl)phosphide = BAP). In this study, BAP ligands proved to be excellent ligands for the synthesis of both Eu3+ and Eu2+ molecular complexes. Sodium bis(mesitoyl)phosphide (Na(mesBAP)) and sodium bis(2,4,6-triisopropylbenzoyl)phosphide (Na(trippBAP)) were employed as ligand precursors for the synthesis of the Eu3+ complexes Eu(bis(mesitoyl)phosphide)3(thf)2 (Eu(mesBAP)3(thf)2) and Eu(bis(2,4,6-triisopropylbenzoyl)phosphide)3 (Eu(trippBAP)3), as well as the Eu2+ complex, Eu(bis(2,4,6-triisopropylbenzoyl)phosphide)2(dme)2 (Eu(trippBAP)2(dme)2) (thf = tetrahydrofuran, dme = 1,2-dimethoxyethane). All complexes were characterized using a combination of UV-vis-NIR-IR and NMR spectroscopies, and single-crystal X-ray diffraction (SC-XRD). The magnetic properties of these three monomeric Eu complexes were investigated by variable-temperature magnetic susceptibility. The magnetic data are typical for these ions, with Eu(trippBAP)2(dme)2 displaying Curie-type behavior. Both Eu(trippBAP)3 and Eu(mesBAP)3(thf)2 possess similar 7F0-7F1 spin-orbit energy gaps and a similar zero-field splitting of the 7F1 state.

14.
Molecules ; 27(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35956757

RESUMO

A concise review is provided of the contributions that various spectroscopic methods have made to our understanding of the physical and electronic structures of mononuclear molybdenum enzymes. Contributions to our understanding of the structure and function of each of the major families of these enzymes is considered, providing a perspective on how spectroscopy has impacted the field.


Assuntos
Molibdênio , Espectroscopia de Ressonância de Spin Eletrônica , Molibdênio/química
15.
Inorg Chem ; 61(35): 13728-13742, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36000991

RESUMO

The complex [TEA][Tp*MoIV(O)(S2BMOPP)] (1) [TEA = tetraethylammonium, Tp* = tris(3,5-dimethylpyrazolyl)hydroborate, and BMOPP = 6-(3-butynyl-2-methyl-2-ol)-2-pivaloyl pterin] is a structural analogue of the molybdenum cofactor common to all pyranopterin molybdenum enzymes because it possesses a pyranopterin-ene-1,2-dithiolate ligand (S2BMOPP) that exists primarily in the ring-closed pyrano structure as a resonance hybrid of ene-dithiolate and thione-thiolate forms. Compound 1, the protonated [Tp*MoIV(O)(S2BMOPP-H)] (1-H) and one-electron-oxidized [Tp*MoV(O)(S2BMOPP)] [1-Mo(5+)] species have been studied using a combination of electrochemistry, electronic absorption, and electron paramagnetic resonance (EPR) spectroscopy. Additional insight into the nature of these molecules has been derived from electronic structure computations. Differences in dithiolene C-S bond lengths correlate with relative contributions from both ene-dithiolate and thione-thiolate resonance structures. Upon protonation of 1 to form 1-H, large spectroscopic changes are observed with transitions assigned as Mo(xy) → pyranopterin metal-to-ligand charge transfer and dithiolene → pyranopterin intraligand charge transfer, respectively, and this underscores a dramatic change in electronic structure between 1 and 1-H. The changes in electronic structure that occur upon protonation of 1 are also reflected in a large >300 mV increase in the Mo(V/IV) redox potential for 1-H, resulting from the greater thione-thiolate resonance contribution and decreased charge donation that stabilize the Mo(IV) state in 1-H with respect to one-electron oxidation. EPR spin Hamiltonian parameters for one-electron-oxidized 1-Mo(5+) and uncyclized [Tp*MoV(O)(S2BDMPP)] [3-Mo(5+)] [BDMPP = 6-(3-butynyl-2,2-dimethyl)-2-pivaloyl pterin] are very similar to each other and to those of [Tp*MoVO(bdt)] (bdt = 1,2-ene-dithiolate). This indicates that the dithiolate form of the ligand dominates at the Mo(V) level, consistent with the demand for greater S → Mo charge donation and a corresponding increase in Mo-S covalency as the oxidation state of the metal is increased. Protonation of 1 represents a simple reaction that models how the transfer of a proton from neighboring acidic amino acid residues to the Mo cofactor at a nitrogen atom within the pyranopterin dithiolene (PDT) ligand in pyranopterin molybdenum enzymes can impact the electronic structure of the Mo-PDT unit. This work also illustrates how pyran ring-chain tautomerization drives changes in resonance contributions to the dithiolene chelate and may adjust the reduction potential of the Mo ion.


Assuntos
Molibdênio , Tionas , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Molibdênio/química , Pterinas/química
16.
J Inorg Biochem ; 235: 111907, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932756

RESUMO

Resonance Raman spectroscopy (rR) is a powerful spectroscopic probe that is widely used for studying the geometric and electronic structure of metalloproteins. In this focused review, we detail how resonance Raman spectroscopy has contributed to a greater understanding of electronic structure, geometric structure, and the reaction mechanisms of pyranopterin molybdenum enzymes. The review focuses on the enzymes sulfite oxidase (SO), dimethyl sulfoxide reductase (DMSOR), xanthine oxidase (XO), and carbon monoxide dehydrogenase. Specifically, we highlight how Mo-Ooxo, Mo-Ssulfido, Mo-Sdithiolene, and dithiolene CC vibrational modes, isotope and heavy atom perturbations, resonance enhancement, and associated Raman studies of small molecule analogs have provided detailed insight into the nature of these metalloenzyme active sites.


Assuntos
Metaloproteínas , Molibdênio , Coenzimas/química , Metaloproteínas/química , Modelos Moleculares , Molibdênio/química , Pterinas/química , Análise Espectral Raman
17.
J Am Chem Soc ; 144(28): 12781-12788, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35802385

RESUMO

Photoinduced electron spin polarization (ESP) is reported in the ground state of a series of complexes consisting of an organic radical (nitronylnitroxide, NN) covalently attached to a donor-acceptor chromophore either directly or via para-phenylene bridges substituted with 0-4 methyl groups. These molecules represent a class of chromophores that undergo visible light excitation to produce an initial exchange-coupled, three-spin [bpy•-, CAT•+ (= semiquinone, SQ) and NN•], charge-separated doublet 2S1 (S = chromophore spin singlet configuration) excited state that rapidly decays by magnetic exchange-enhanced internal conversion to a 2T1 (T = chromophore excited spin triplet configuration) state. The 2T1 state equilibrates with chromophoric and NN radical-derived excited states, resulting in absorptive ESP of the recovered ground state, which persists for greater than a millisecond and can be measured by low-temperature time-resolved electron paramagnetic resonance spectroscopy. The magnitude of the ground state ESP is found to correlate with the excited state magnetic exchange interaction between the CAT+• and NN• radicals, which in turn is controlled by the structure of the bridge fragment.

18.
J Phys Chem Lett ; 13(3): 872-878, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35045702

RESUMO

Ground-state electron spin polarization (ESP) is generated in radical elaborated (bpy)Pt(CAT-NN) and (bpy)Pt(CAT-p-Me2PhMe2-NN) (bpy = 5,5'-di-tert-butyl-2,2'-bipyridine, CAT = 3-tert-butylcatecholate, p-Ph = para-phenylene, NN = nitronylnitroxide). Photoexcitation produces an exchange-coupled, three-spin, charge-separated doublet 2S1 (S = chromophore excited spin singlet configuration) excited state that rapidly decays to a 2T1 (T = chromophore excited spin triplet configuration) excited state. The SQ-bridge-NN bond torsions affect the magnitude of the excited state exchange interaction (JSQ-NN), which determines the 2T1-4T1 energy gap. Ground state ESP is dependent on the magnitude of JSQ-NN, and we postulate that this results from differences in 2T1 and 4T1 state mixing. Mechanisms that lead to the rapid transfer of the excited state ESP to the ground state are discussed. Although subnanosecond 2T1 state lifetimes are measured optically in solution, the ground state ESP decays very slowly at 20 K and is observable for more than a millisecond.

19.
Chem Sci ; 12(41): 13704-13710, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34760154

RESUMO

A change in the sign of the ground-state electron spin polarization (ESP) is reported in complexes where an organic radical (nitronylnitroxide, NN) is covalently attached to a donor-acceptor chromophore via two different meta-phenylene bridges in (bpy)Pt(CAT-m-Ph-NN) (mPh-Pt) and (bpy)Pt(CAT-6-Me-m-Ph-NN) (6-Me-mPh-Pt) (bpy = 5,5'-di-tert-butyl-2,2'-bipyridine, CAT = 3-tert-butylcatecholate, m-Ph = meta-phenylene). These molecules represent a new class of chromophores that can be photoexcited with visible light to produce an initial exchange-coupled, 3-spin (bpy˙-, CAT+˙ = semiquinone (SQ), and NN), charge-separated doublet 2S1 (S = chromophore excited spin singlet configuration) excited state. Following excitation, the 2S1 state rapidly decays to the ground state by magnetic exchange-mediated enhanced internal conversion via the 2T1 (T = chromophore excited spin triplet configuration) state. This process generates emissive ground state ESP in 6-Me-mPh-Pt while for mPh-Pt the ESP is absorptive. It is proposed that the emissive polarization in 6-Me-mPh-Pt results from zero-field splitting induced transitions between the chromophoric 2T1 and 4T1 states, whereas predominant spin-orbit induced transitions between 2T1 and low-energy NN-based states give rise to the absorptive polarization observed for mPh-Pt. The difference in the sign of the ESP for these molecules is consistent with a smaller excited state 2T1 - 4T1 gap for 6-Me-mPh-Pt that derives from steric interactions with the 6-methyl group. These steric interactions reduce the excited state pairwise SQ-NN exchange coupling compared to that in mPh-Pt.

20.
J Org Chem ; 86(21): 15577-15587, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34644082

RESUMO

Electronic coupling through organic bridges facilitates magnetic exchange interactions and controls electron transfer and single-molecule device electron transport. Electronic coupling through alternant π-systems (e.g., benzene) is better understood than the corresponding coupling through nonalternant π-systems (e.g., azulene). Herein, we examine the structure, spectroscopy, and magnetic exchange coupling in two biradicals (1,3-SQ2Az and 1,3-SQ-Az-NN; SQ = the zinc(II) complex of spin-1/2 semiquinone radical anion, NN = spin-1/2 nitronylnitroxide; Az = azulene) that possess nonalternant azulene π-system bridges. The SQ radical spin density in both molecules is delocalized into the Az π-system, while the NN spin is effectively localized onto the five-atom ONCNO π-system of NN radical. The spin distributions and interactions are probed by EPR spectroscopy and magnetic susceptibility measurements. We find that J = +38 cm-1 for 1,3-SQ2Az and J = +9 cm-1 for 1,3-SQ-Az-NN (H=-2JS^SQ·S^SQorNN). Our results highlight the differences in exchange coupling mediated by azulene compared to exchange coupling mediated by alternant π-systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA