Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834019

RESUMO

Janus tyrosine kinase (JAK) variants are known drivers for hematological disorders. With the full-length structure of mouse JAK1 being recently resolved, new observations on the localization of variants within closed, open, and dimerized JAK structures are possible. Full-length homology models of human wild-type JAK family members were developed using the Glassman et al. reported mouse JAK1 containing the V658F structure as a template. Many mutational sites related to proliferative hematological disorders reside in the JH2 pseudokinase domains facing the region important in dimerization of JAKs in both closed and open states. More than half of all JAK gain of function (GoF) variants are changes in polarity, while only 1.2% are associated with a change in charge. Within a JAK1-JAK3 homodimer model, IFNLR1 (PDB ID7T6F) and the IL-2 common gamma chain subunit (IL2Rγc) were aligned with the respective dimer implementing SWISS-MODEL coupled with ChimeraX. JAK3 variants were observed to encircle the catalytic site of the kinase domain, while mutations in the pseudokinase domain align along the JAK-JAK dimerization axis. FERM domains of JAK1 and JAK3 are identified as a hot spot for hematologic malignancies. Herein, we propose new allosteric surfaces for targeting hyperactive JAK dimers.


Assuntos
Neoplasias Hematológicas , Janus Quinases , Animais , Humanos , Camundongos , Janus Quinases/genética , Tirosina/genética , Janus Quinase 1/genética , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Mutação , Desenvolvimento de Medicamentos , Janus Quinase 2/genética , Receptores de Interferon/genética
2.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047778

RESUMO

Overactive Janus kinases (JAKs) are known to drive leukemia, making them well-suited targets for treatment. We sought to identify new JAK-activating mutations and instead found a JAK1-inactivating pseudokinase mutation, V666G. In contrast to other pseudokinase mutations that canonically lead to an active kinase, the JAK1 V666G mutation led to under-activation seen by reduced phosphorylation. To understand the functional role of JAK1 V666G in modifying kinase activity we investigated its influence on other JAK kinases and within the Interleukin-2 pathway. JAK1 V666G not only inhibited its own activity, but its presence could inhibit other JAK kinases. These findings provide new insights into the potential of JAK1 pseudokinase to modulate its own activity, as well as of other JAK kinases. Thus, the features of the JAK1 V666 region in modifying JAK kinases can be exploited to allosterically inhibit overactive JAKs.


Assuntos
Interleucina-2 , Leucemia , Humanos , Fosforilação , Interleucina-2/genética , Interleucina-2/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Transdução de Sinais , Janus Quinases/metabolismo , Janus Quinase 3/genética , Janus Quinase 3/metabolismo
3.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992367

RESUMO

COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), remains an ongoing global health challenge. This study analyzed 3641 SARS-CoV-2 positive samples from the El Paso, Texas, community and hospitalized patients over 48 weeks from Fall 2021 to Summer 2022. The binational community along the U.S. southern border was predominantly SARS-CoV-2 Delta variant (B.1.617.2) positive for a 5-week period from September 2021 to January 2022 and quickly transitioned to the Omicron variant (B.1.1.529), which was first detected at the end of December 2021. Omicron replaced Delta as the predominant detectable variant in the community and was associated with a sharp increase in COVID-19 positivity rate, related hospitalizations, and newly reported cases. In this study, Omicron BA.1, BA.4, and BA.5 variants were overwhelmingly associated with S-gene dropout by qRT-PCR analysis unlike the Delta and Omicron BA.2 variants. The study reveals that a dominant variant, like Delta, can be rapidly replaced by a more transmissible variant, like Omicron, within a dynamic metropolitan border city, necessitating enhanced monitoring, readiness, and response from public health officials and healthcare workers.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pessoal de Saúde , Hospitalização
4.
Biology (Basel) ; 11(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35741451

RESUMO

In recent years, the thienopyrazole moiety has emerged as a pharmacologically active scaffold with antitumoral and kinase inhibitory activity. In this study, high-throughput screening of 2000 small molecules obtained from the ChemBridge DIVERset library revealed a unique thieno[2,3-c]pyrazole derivative (Tpz-1) with potent and selective cytotoxic effects on cancer cells. Compound Tpz-1 consistently induced cell death at low micromolar concentrations (0.19 µM to 2.99 µM) against a panel of 17 human cancer cell lines after 24 h, 48 h, or 72 h of exposure. Furthermore, an in vitro investigation of Tpz-1's mechanism of action revealed that Tpz-1 interfered with cell cycle progression, reduced phosphorylation of p38, CREB, Akt, and STAT3 kinases, induced hyperphosphorylation of Fgr, Hck, and ERK 1/2 kinases, and disrupted microtubules and mitotic spindle formation. These findings support the continued exploration of Tpz-1 and other thieno[2,3-c]pyrazole-based compounds as potential small-molecule anticancer agents.

5.
Cells ; 11(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053370

RESUMO

In this study, we identified a novel pyrazole-based derivative (P3C) that displayed potent cytotoxicity against 27 human cancer cell lines derived from different tissue origins with 50% cytotoxic concentrations (CC50) in the low micromolar and nanomolar range, particularly in two triple-negative breast cancer (TNBC) cell lines (from 0.25 to 0.49 µM). In vitro assays revealed that P3C induces reactive oxygen species (ROS) accumulation leading to mitochondrial depolarization and caspase-3/7 and -8 activation, suggesting the participation of both the intrinsic and extrinsic apoptotic pathways. P3C caused microtubule disruption, phosphatidylserine externalization, PARP cleavage, DNA fragmentation, and cell cycle arrest on TNBC cells. In addition, P3C triggered dephosphorylation of CREB, p38, ERK, STAT3, and Fyn, and hyperphosphorylation of JNK and NF-kB in TNBC cells, indicating the inactivation of both p38MAPK/STAT3 and ERK1/2/CREB signaling pathways. In support of our in vitro assays, transcriptome analyses of two distinct TNBC cell lines (MDA-MB-231 and MDA-MB-468 cells) treated with P3C revealed 28 genes similarly affected by the treatment implicated in apoptosis, oxidative stress, protein kinase modulation, and microtubule stability.


Assuntos
Pirazóis/toxicidade , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/patologia , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Fosfatidilserinas/metabolismo , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Pirazóis/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Tubulina (Proteína)/metabolismo
6.
Bioessays ; 44(1): e2100189, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34812505

RESUMO

The COVID-19 pandemic is responsible for millions of deaths worldwide yet its origin remains unclear. Two potential scenarios of how infection of humans initially occurred include zoonotic transfer from wild animals and a leak of the pathogen from a research laboratory. The Wuhan wet markets where wild animals are sold represent a strong scenario for zoonotic transfer. However, isolation of SARS-CoV-2 or its immediate predecessor from wild animals in their natural environment has yet to be documented. Due to incomplete evidence for a zoonotic origin, a laboratory origin is plausible. The Wuhan Institute of Virology is at the epicenter of the pandemic and their work has included manipulation of wild-type coronavirus to enable infection of human cells. Although stronger evidence supports the zoonotic transfer, inconclusive reports maintain the laboratory leak hypothesis alive. It is imperative to reach a factual conclusion to prevent future pandemics.


Assuntos
COVID-19 , Pandemias , Animais , Humanos , Laboratórios , SARS-CoV-2
7.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830095

RESUMO

Compared to other ethnicities, Hispanic children incur the highest rates of leukemia, and most cases are diagnosed as Acute Lymphoblastic Leukemia (ALL). Despite improved treatment and survival for ALL, disproportionate health outcomes in Hispanics persist. Thus, it is essential to identify oncogenic mutations within this demographic to aid in the development of new strategies to diagnose and treat ALL. Using whole-exome sequencing, five single nucleotide polymorphisms within mitogen-activated protein kinase 3 (MAP2K3) were identified in an ALL cancer patient library from the U.S./Mexico border. MAP2K3 R26T and P11T are located near the substrate-binding site, while R65L and R67W localized to the kinase domain. Truncated-MAP2K3 mutant Q73* was also identified. Transfection in HEK293 cells showed that the quadruple-MEK3 mutant (4M-MEK3) impacted protein stability, inducing degradation and reducing expression. The expression of 4M-MEK3 could be rescued by cysteine/serine protease inhibition, and proteasomal degradation of truncated-MEK3 occurred in a ubiquitin-independent manner. MEK3 mutants displayed reduced auto-phosphorylation and enzymatic activity, as seen by decreases in p38 phosphorylation. Furthermore, uncoupling of the MEK3/p38 signaling pathway resulted in less suppressive activity on HEK293 cell viability. Thus, disruption of MEK3 activation may promote proliferative signals in ALL. These findings suggest that MEK3 represents a potential therapeutic target for treating ALL.


Assuntos
Proliferação de Células/genética , MAP Quinase Quinase 3 , Sistema de Sinalização das MAP Quinases/genética , Mutação , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteólise , Células HEK293 , Células Hep G2 , Humanos , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
8.
Sci Rep ; 11(1): 16951, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417497

RESUMO

T-cell activation and cellular expansion by common gamma chain cytokines such as Interleukin-2 is necessary for adaptive immunity. However, when unregulated these same pathways promote pathologies ranging from autoimmune disorders to cancer. While the functional role of Interleukin-2 and downstream effector molecules is relatively clear, the repertoire of phosphoregulatory proteins downstream of this pathway is incomplete. To identify phosphoproteins downstream of common gamma chain receptor, YT cells were radiolabeled with [32P]-orthophosphate and stimulated with Interleukin-2. Subsequently, tyrosine phosphorylated proteins were immunopurified and subjected to tandem mass spectrometry-leading to the identification of CrkL. Phosphoamino acid analysis revealed concurrent serine phosphorylation of CrkL and was later identified as S114 by mass spectrometry analysis. S114 was inducible through stimulation with Interleukin-2 or T-cell receptor stimulation. Polyclonal antibodies were generated against CrkL phospho-S114, and used to show its inducibility by multiple stimuli. These findings confirm CrkL as an Interleukin-2 responsive protein that becomes phosphorylated at S114 by a kinase/s downstream of PI3K and MEK/ERK signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citocinas/metabolismo , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Interleucina-2/metabolismo , Fosfosserina/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Anticorpos/metabolismo , Linhagem Celular , Humanos , Sistema de Sinalização das MAP Quinases , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Processamento de Proteína Pós-Traducional , Serina-Treonina Quinases TOR/metabolismo
9.
Front Immunol ; 12: 690477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326843

RESUMO

The positive-sense single stranded RNA virus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), resulted in a global pandemic with horrendous health and economic consequences not seen in a century. At a finer scale, immunologically, many of these devastating effects by SARS-CoV-2 can be traced to a "cytokine storm" resulting in the simultaneous activation of Janus Kinases (JAKs) and Signal Transducers and Activators of Transcription (STAT) proteins downstream of the many cytokine receptor families triggered by elevated cytokines found in Coronavirus Disease 2019 (COVID-19). In this report, cytokines found in the storm are discussed in relation to the JAK-STAT pathway in response to SARS-CoV-2 and the lessons learned from RNA viruses and previous Coronaviruses (CoVs). Therapeutic strategies to counteract the SARS-CoV-2 mediated storm are discussed with an emphasis on cell signaling and JAK inhibition.


Assuntos
COVID-19/imunologia , Síndrome da Liberação de Citocina/imunologia , SARS-CoV-2/fisiologia , Animais , Citocinas/metabolismo , Humanos , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
10.
Clin Exp Med ; 21(1): 149-159, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33048259

RESUMO

Metronomic chemotherapy has shown promising antitumor activity in a number of malignancies. We previously reported a phase II clinical trial of metronomic UFT (a 5-fluorouracil prodrug; 100 mg/twice per day p.o.) and cyclophosphamide (CTX; 500 mg/m2 i.v. bolus on day 1 and then 50 mg/day p.o.) plus celecoxib (200 mg/twice a day p.o.) in 38 patients with advanced refractory gastrointestinal tumors. The mechanisms of action of metronomic chemotherapy include inhibition of angiogenesis, direct cytotoxic effects on cancer cells, and, at least for drugs such as CTX, activation of the immune system. To further evaluate the latter, we carried out an immune system multiplex 14-cytokine profiling of plasma samples that were available (for day 0, day 28, and day 56) from 31 of the 38 patients in the above-noted clinical trial. Our results show that pre-treatment plasma-level cutoffs of interferon gamma (> 12.84 pg/ml), sCD40L (< 2168 pg/ml), interferon alpha 2 (> 55.11 pg/ml), and IL-17a (< 15.1 pg/ml) were predictive markers for those patients with better progression-free survival (p < .05 for each cytokine). After 28 days of metronomic therapy, the plasma levels of sCD40L, IL-17a, and IL-6 (< 130 pg/ml) could serve as predictors of improved progression-free survival, as could levels interferon gamma and sCD40L after 56 days of therapy. We observed minimal changes in cytokine profiles, from baseline, as a consequence of the metronomic therapy, with the exception of an elevation of IL-6 and IL-8 levels 28 days (and 56 days) after treatment started (p < 0.05). Our results indicate that a selective cytokine elevation involves IL-6 and IL-8, following metronomic chemotherapy administration. In addition, interferon gamma and sCD40L may be potential biomarkers for gastrointestinal cancer patients that are likely to benefit from metronomic chemotherapy. Our study contributes to our understanding of the mechanisms of action of metronomic chemotherapy, and the cytokine profiling we describe may guide future selection of gastrointestinal cancer patients for UFT/CTX/celecoxib combination metronomic chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Biomarcadores Tumorais/sangue , Citocinas/sangue , Neoplasias Gastrointestinais/mortalidade , Administração Metronômica , Seguimentos , Neoplasias Gastrointestinais/sangue , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/patologia , Humanos , Prognóstico , Taxa de Sobrevida
11.
J Am Soc Nephrol ; 30(7): 1174-1191, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31126972

RESUMO

BACKGROUND: Mitochondria are dynamic organelles that undergo fission and fusion. During cell stress, mitochondrial dynamics shift to fission, leading to mitochondrial fragmentation, membrane leakage, and apoptosis. Mitochondrial fragmentation requires the cleavage of both outer and inner membranes, but the mechanism of inner membrane cleavage is unclear. Bif-1 and prohibitin-2 may regulate mitochondrial dynamics. METHODS: We used azide-induced ATP depletion to incite cell stress in mouse embryonic fibroblasts and renal proximal tubular cells, and renal ischemia-reperfusion to induce stress in mice. We also used knockout cells and mice to determine the role of Bif-1, and used multiple techniques to analyze the molecular interaction between Bif-1 and prohibitin-2. RESULTS: Upon cell stress, Bif-1 translocated to mitochondria to bind prohibitin-2, resulting in the disruption of prohibitin complex and proteolytic inactivation of the inner membrane fusion protein OPA1. Bif-1-deficiency inhibited prohibitin complex disruption, OPA1 proteolysis, mitochondrial fragmentation, and apoptosis. Domain deletion analysis indicated that Bif-1 interacted with prohibitin-2 via its C-terminus. Notably, mutation of Bif-1 at its C-terminal tryptophan-344 not only prevented Bif-1/prohibitin-2 interaction but also reduced prohibitin complex disruption, OPA1 proteolysis, mitochondrial fragmentation, and apoptosis, supporting a pathogenic role of Bif-1/prohibitin-2 interaction. In mice, Bif-1 bound prohibitin-2 during renal ischemia/reperfusion injury, and Bif-1-deficiency protected against OPA1 proteolysis, mitochondrial fragmentation, apoptosis and kidney injury. CONCLUSIONS: These findings suggest that during cell stress, Bif-1 regulates mitochondrial inner membrane by interacting with prohibitin-2 to disrupt prohibitin complexes and induce OPA1 proteolysis and inactivation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Apoptose , Membranas Mitocondriais/fisiologia , Proteínas Repressoras/fisiologia , Animais , Citocromos c/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proibitinas , Proteólise
12.
Sci Rep ; 9(1): 6005, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979953

RESUMO

Oxidative stress plays a critical role in numerous diseases. Therefore, the pursuit of compounds with antioxidant activity remains critical. Green barley young leaves aqueous extract (GB) was tested for its capacity to ameliorate cellular oxidative stress, and its potential cytoprotective mechanism was partially elucidated. Through Folin-Ciocalteau and 1,1-diphenyl-2-picrylhydrazyl (DPPH) colorimetric assays, GB total phenolic content and free radical scavenging activity were found to be 59.91 ± 2.17 mg/L and 110.75 µg/ml (IC50), respectively. Using a live cell-based propidium iodide dye exclusion assay and flow cytometry, GB was found to display significant cytoprotection activity on three human lymphocytic cell lines exposed to an aggressive H2O2-induced oxidative stress. The molecular mechanism for GB cytoprotection activity was assessed via bead-based xMAP technology on the Luminex platform and western blot analysis. GB treatment resulted in activation of Lyn, Akt, and ERK1/2, suggesting that GB is able to mitigate the H2O2-induced oxidative stress via activation of both the Lyn/PI3K/Akt and ERK/MAPK pathways. Our findings support the notion that GB extract has the potential to be a valuable therapeutic agent and may serve to establish a strategy to discover potential compound(s) or biological extracts/mixtures to be incorporated as a treatment to prevent oxidative stress-related diseases.


Assuntos
Hordeum/química , Linfócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinases da Família src/metabolismo , Linhagem Celular , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Linfócitos/citologia , Linfócitos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fenóis/análise , Fosforilação/efeitos dos fármacos
13.
Case Rep Oncol ; 12(1): 211-217, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31011318

RESUMO

Embryonal tumor with multilayered rosettes (ETMR) are rare pediatric brain tumors with increased malignant potential. Despite the advances in multimodal treatment schemes the overall 5-year event free survival rates for ETMR are not favorable. Further, therapeutic regimes are limited to a case by case basis due to the limited amount of literature and guidelines available for treating childhood ETMR. We report one patient with refractory ETMR who was successfully treated by implementing a molecular profiling approach which identified the tyrosine kinase inhibitor dasatinib as a viable therapy. Our results suggest that utilizing this precision medicine approach might prove useful in treating patients with refractory ETMR.

14.
Ethn Dis ; 29(Suppl 1): 135-144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906162

RESUMO

The Research Centers in Minority Institutions (RCMI) program was established by the US Congress to support the development of biomedical research infrastructure at minority-serving institutions granting doctoral degrees in the health professions or in a health-related science. RCMI institutions also conduct research on diseases that disproportionately affect racial and ethnic minorities (ie, African Americans/Blacks, American Indians and Alaska Natives, Hispanics, Native Hawaiians and Other Pacific Islanders), those of low socioeconomic status, and rural persons. Quantitative metrics, including the numbers of doctoral science degrees granted to underrepresented students, NIH peer-reviewed research funding, peer-reviewed publications, and numbers of racial and ethnic minorities participating in sponsored research, demonstrate that RCMI grantee institutions have made substantial progress toward the intent of the Congressional legislation, as well as the NIH/NIMHD-linked goals of addressing workforce diversity and health disparities. Despite this progress, nationally, many challenges remain, including persistent disparities in research and career development awards to minority investigators. The continuing underrepresentation of minority investigators in NIH-sponsored research across multiple disease areas is of concern, in the face of unrelenting national health inequities. With the collaborative network support by the RCMI Translational Research Network (RTRN), the RCMI community is uniquely positioned to address these challenges through its community engagement and strategic partnerships with non-RCMI institutions. Funding agencies can play an important role by incentivizing such collaborations, and incorporating metrics for research funding that address underrepresented populations, workforce diversity and health equity.


Assuntos
Pesquisa Comportamental , Pesquisa Biomédica , Grupos Minoritários , Saúde das Minorias , Pesquisa Translacional Biomédica , Pesquisa Comportamental/métodos , Pesquisa Comportamental/organização & administração , Pesquisa Biomédica/métodos , Pesquisa Biomédica/organização & administração , Diversidade Cultural , Etnicidade/educação , Etnicidade/estatística & dados numéricos , Disparidades nos Níveis de Saúde , Humanos , Grupos Minoritários/educação , Grupos Minoritários/estatística & dados numéricos , Saúde das Minorias/educação , Saúde das Minorias/etnologia , Pesquisadores , Apoio à Pesquisa como Assunto , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/organização & administração , Estados Unidos , Recursos Humanos
15.
Future Sci OA ; 4(10): FSO346, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30450233

RESUMO

Aim: To construct classification scores based on a combination of cancer patient plasma biomarker levels, for predicting progression-free survival. Methods: The approach is based on the optimization of the biomarker cut-off values, which maximize the statistical differences between the groups with values lower or larger than the cut-offs, respectively. An intuitive visualization of the quality of the classification score is also proposed. Results: Even if there are only weak correlations between individual biomarker levels and progression-free survival, scores based on suitably chosen combination of three biomarkers have classification power comparable with the Response Evaluation Criteria in Solid Tumors criteria classification of response to treatments in solid tumors. Conclusion: Our approach has the potential to improve the selection of the patients who will benefit from a given anticancer treatment.

16.
Biochem J ; 475(18): 2907-2923, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30120106

RESUMO

Regulation of intracellular signaling pathways in lymphocytes is critical for cell homeostasis and immune response. Interleukin-2 (IL-2), a key regulator of lymphocytes, signals following receptor-ligand engagement and subsequent recruitment and activation of effector proteins including JAKs and STATs. Lymphocytes can also be regulated by the central nervous system through the ß2 adrenergic receptor (ß2AR) pathway which can affect cell trafficking, proliferation, differentiation, and cytokine production. The cross-talk between these two signaling pathways represents an important mechanism that has yet to be fully elucidated. The present study provides evidence for communication between the IL-2 receptor (IL-2R) and ß2AR. Treatment of human lymphoid cell lines with the ß2AR agonist isoproterenol (ISO) alone increased cAMP levels and mediated a stimulatory response by activating AKT and ERK to promote cell viability. Interestingly, ISO activation of ß2AR also induced threonine phosphorylation of the IL-2Rß. In contrast, ISO treatment prior to IL-2 stimulation produced an inhibitory signal that disrupted IL-2 induced activation of the JAK/STAT, MEK/ERK, and PI3K pathways by inhibiting the formation of the IL-2R beta-gamma chain complex, and subsequently cell proliferation. Moreover, γc-family cytokines-mediated STAT5 activation was also inhibited by ISO. These results suggest a molecular mechanism by which ß2AR signaling can both stimulate and suppress lymphocyte responses and thus explain how certain therapeutic agents, such as vasodilators, may impact immune responsiveness.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Interleucina-2/metabolismo , Isoproterenol/farmacologia , Linfócitos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Subunidade beta de Receptor de Interleucina-2/metabolismo , Linfócitos/citologia , Fator de Transcrição STAT5/metabolismo
17.
Anal Chem ; 90(9): 5930-5937, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29641893

RESUMO

The exploration of new physical and chemical properties of materials and their innovative application in different fields are of great importance to advance analytical chemistry, material science, and other important fields. Herein, we, for the first time, discovered the photothermal effect of an iron oxide nanoparticles (NPs)-mediated TMB (3,3',5,5'-tetramethylbenzidine)-H2O2 colorimetric system, and applied it toward the development of a new NP-mediated photothermal immunoassay platform for visual quantitative biomolecule detection using a thermometer as the signal reader. Using a sandwich-type proof-of-concept immunoassay, we found that the charge transfer complex of the iron oxide NPs-mediated one-electron oxidation product of TMB (oxidized TMB) exhibited not only color changes, but also a strong near-infrared (NIR) laser-driven photothermal effect. Hence, oxidized TMB was explored as a new sensitive photothermal probe to convert the immunoassay signal into heat through the near-infrared laser-driven photothermal effect, enabling simple photothermal immunoassay using a thermometer. Based on the new iron oxide NPs-mediated TMB-H2O2 photothermal immunoassay platform, prostate-specific antigen (PSA) as a model biomarker can be detected at a concentration as low as 1.0 ng·mL-1 in normal human serum. The discovered photothermal effect of the colorimetric system and the developed new photothermal immunoassay platform open up a new horizon for affordable detection of disease biomarkers and have great potential for other important material and biomedical applications of interest.


Assuntos
Benzidinas/química , Colorimetria , Peróxido de Hidrogênio/química , Imunoensaio , Nanopartículas/química , Antígeno Prostático Específico/análise , Temperatura , Humanos , Oxirredução , Processos Fotoquímicos
18.
Oncotarget ; 8(39): 65445-65456, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029444

RESUMO

Prohibitins (PHB1 and PHB2) have been proposed to play important roles in cancer development and progression, however their oncogenic mechanism of action has not been fully elucidated. Previously, we showed that the PHB1 and PHB2 protein complex is required for mitochondrial homeostasis and survival of normal human lymphocytes. In this study, novel evidence is provided that indicates mitochondrial prohibitins are overexpressed in hematologic tumor cells and promote cell survival under conditions of oxidative stress. Immunofluorescent confocal microscopy revealed both proteins to be primarily confined to mitochondria in primary patient lymphoid and myeloid tumor cells and tumor cell lines, including Kit225 cells. Subsequently, siRNA-mediated knockdown of PHB1 and PHB2 in Kit225 cells significantly enhanced sensitivity to H2O2-induced cell death, suggesting a protective or anti-apoptotic function in hematologic malignancies. Indeed, PHB1 and PHB2 protein levels were significantly higher in tumor cells isolated from leukemia and lymphoma patients compared to PBMCs from healthy donors. These findings suggest that PHB1 and PHB2 are upregulated during tumorigenesis to maintain mitochondrial integrity and therefore may serve as novel biomarkers and molecular targets for therapeutic intervention in certain types of hematologic malignancies.

19.
Br J Cancer ; 116(3): 324-334, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28056464

RESUMO

BACKGROUND: Although there are reports that metronomic cyclophosphamide (CTX) can be immune stimulating, the impact of its combination with anti-CTLA-4 immunotherapy for the treatment of cancer remains to be evaluated. METHODS: Murine EMT-6/P breast cancer, or its cisplatin or CTX-resistant variants, or CT-26 colon, were implanted into Balb/c mice. Established tumours were monitored for relative growth following treatment with anti-CTLA-4 antibody alone or in combination with; (a) metronomic CTX (ldCTX; 20 mg kg-1 day-1), b) bolus (150 mg kg-1) plus ldCTX, or (c) sequential treatment with gemcitabine (160 mg kg-1 every 3 days). RESULTS: EMT-6/P tumours responded to anti-CTLA-4 therapy, but this response was less effective when combined with bolus plus ldCTX. Anti-CTLA-4 could be effectively combined with either ldCTX (without a bolus), or with regimens of either sequential or concomitant gemcitabine, including in orthotopic EMT-6 tumours, and independently of the schedule of drug administration. Tumour responses were confirmed with CT-26 tumours but were less pronounced in drug-resistant EMT-6/CTX or EMT-6/DDP tumour models than in the parent tumour. A number of tumour bearing mice developed spontaneous metastases under continuous therapy. The majority of cured mice rejected tumour re-challenges. CONCLUSIONS: Metronomic CTX can be combined with anti-CTLA-4 therapy, but this therapy is impaired by concomitant bolus CTX. Sequential therapy of anti-CTLA-4 followed by gemcitabine is effective in chemotherapy-naive tumours, although tumour relapses can occur, in some cases accompanied by the development of spontaneous metastases.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antineoplásicos Alquilantes/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Ciclofosfamida/administração & dosagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Administração Metronômica , Animais , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ipilimumab , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias
20.
Tumour Biol ; 37(9): 12643-12654, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27444277

RESUMO

Tyrosine kinase inhibitors (TKIs) have dramatically improved the life expectancy of patients suffering from chronic myeloid leukemia (CML); however, patients will eventually develop resistance to TKI therapy or adverse side effects due to secondary off-target mechanisms associated with TKIs. CML patients exhibiting TKI resistance are at greater risk of developing an aggressive and drug-insensitive disease. Drug-resistant CML typically arises in response to spontaneous mutations within the drug binding sites of the targeted oncoproteins. To better understand the mechanism of drug resistance in TKI-resistant CML patients, the BCR-ABL transformed cell line KCL22 was grown with increasing concentrations of imatinib for a period of 6 weeks. Subsequently, a drug-resistant derivative of the parental KCL22 cell line harboring the T315I gatekeeper mutation was isolated and investigated for TKI drug sensitivity via multi-agent drug screens. A synergistic combination of ponatinib- and forskolin-reduced cell viability was identified in this clinically relevant imatinib-resistant CML cell line, which also proved efficacious in other CML cell lines. In summary, this study provides new insight into the biological underpinnings of BCR-ABL-driven CML and potential rationale for investigating novel treatment strategies for patients with T315I CML.


Assuntos
Colforsina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Mesilato de Imatinib/farmacologia , Imidazóis/farmacologia , Mutação , Piridazinas/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Células HEK293 , Células Hep G2 , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA