Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Auton Neurosci ; 251: 103134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101169

RESUMO

PURPOSE: Remodeling of sympathetic nerves and ACE2 has been implicated in cardiac pathology, and ACE2 also serves as a receptor for SARS-CoV-2. However, there is limited histological knowledge about the transmural distribution of sympathetic nerves and the cellular localization and distribution of ACE2 in human left ventricles from normal or diseased hearts. Goals of this study were to establish the normal pattern for these parameters and determine changes that occurred in decedents with cardiovascular disease alone compared to those with cardiac pathology and severe COVID-19. METHODS: We performed immunohistochemical analysis on sections of left ventricular wall from twenty autopsied human hearts consisting of a control group, a cardiovascular disease group, and COVID-19 ARDS, and COVID-19 non-ARDS groups. RESULTS: Using tyrosine hydroxylase as a noradrenergic marker, we found substantial sympathetic nerve loss in cardiovascular disease samples compared to controls. Additionally, we found heterogeneous nerve loss in both COVID-19 groups. Using an ACE2 antibody, we observed robust transmural staining localized to pericytes in the control group. The cardiovascular disease hearts displayed regional loss of ACE2 in pericytes and regional increases in staining of cardiomyocytes for ACE2. Similar changes were observed in both COVID-19 groups. CONCLUSIONS: Heterogeneity of sympathetic innervation, which occurs in cardiac disease and is not increased by severe COVID-19, could contribute to arrhythmogenesis. The dominant localization of ACE2 to pericytes suggests that these cells would be the primary target for potential cardiac infection by SARS-CoV-2. Regional changes in ACE2 staining by myocytes and pericytes could have complex effects on cardiac pathophysiology.


Assuntos
COVID-19 , Doenças Cardiovasculares , Cardiopatias , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Peptidil Dipeptidase A
3.
Bioelectron Med ; 8(1): 20, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536461

RESUMO

BACKGROUND: The vagus nerve affects innate immune responses by activating spleen-projecting sympathetic neurons, which modulate leukocyte function. Recent basic and clinical research investigating vagus nerve stimulation to engage the cholinergic anti-inflammatory pathway (CAP) has shown promising therapeutic results for a variety of inflammatory diseases. Abundant sympathetic innervation occurs in rodent spleens, and use of these species has dominated mechanistic research investigating the CAP. However, previous neuroanatomical studies of human spleen found a more restricted pattern of innervation compared to rodents. Therefore, our primary goal was to establish the full extent of sympathetic innervation of human spleens using donor tissue with the shortest procurement to fixation time. Parallel studies of porcine spleen, a large animal model, were performed as a positive control and for comparison. METHODS: Human and porcine spleen tissue were fixed immediately after harvest and prepared for immunohistochemistry. Human heart and porcine spleen were stained in conjunction as positive controls. Several immunohistochemical protocols were compared for best results. Tissue was stained for tyrosine hydroxylase (TH), a noradrenergic marker, using VIP purple chromogen. Consecutive tissue slices were stained for neuropeptide Y (NPY), which often co-localizes with TH, or double-labelled for TH and CD3, a T cell marker. High-magnification images and full scans of the tissue were obtained and analyzed for qualitative differences between species. RESULTS: TH had dominant perivascular localization in human spleen, with negligible innervation of parenchyma, but such nerves were abundant throughout ventricular myocardium. In marked contrast, noradrenergic innervation was abundant in all regions of porcine spleen, with red pulp having more nerves than white pulp. NPY stain results were consistent with this pattern. In human spleen, noradrenergic nerves only ran close to T cells at the boundary of the periarterial lymphatic sheath and arteries. In porcine spleen, noradrenergic nerves were closely associated with T cells in both white and red pulp as well as other leukocytes in red pulp. CONCLUSION: Sympathetic innervation of the spleen varies between species in both distribution and abundance, with humans and pigs being at opposite extremes. This has important implications for sympathetic regulation of neuroimmune interactions in the spleen of different species and focused targeting of the CAP in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA