Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Ann Hepatol ; 28(3): 101088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36933885

RESUMO

INTRODUCTION AND OBJECTIVES: Psychosocial stressors related to the coronavirus-19 (COVID-19) pandemic increased alcohol consumption. The effect on patients with alcohol-related liver diseases remains unclear. MATERIALS AND METHODS: Hospitalizations at a tertiary care center due to alcohol-related liver disease from March 1 through August 31 in 2019 (pre-pandemic cohort) and 2020 (pandemic cohort) were reviewed retrospectively. Differences in patient demographics, disease features, and outcomes were estimated in patients with alcoholic hepatitis utilizing T-tests, Mann-Whitney tests, Chi-square and Fisher Exact Tests and Anova models and logistic regression models in patients with alcoholic cirrhosis. RESULTS: 146 patients with alcoholic hepatitis and 305 patients with alcoholic cirrhosis were admitted during the pandemic compared to 75 and 396 in the pre-pandemic cohort. Despite similar median Maddrey Scores (41.20 vs. 37.45, p=0.57), patients were 25% less likely to receive steroids during the pandemic. Patients with alcoholic hepatitis admitted during the pandemic were more likely to have hepatic encephalopathy (0.13; 95% CI:0.01, 0.25), variceal hemorrhage (0.14; 95% CI:0.04, 0.25), require oxygen (0.11; 95% CI:0.01, 0.21), vasopressors (OR:3.49; 95% CI:1.27, 12.01) and hemodialysis (OR:3.70; 95% CI:1.22, 15.13). On average, patients with alcoholic cirrhosis had MELD-Na scores 3.77 points higher (95% CI:1.05, 13.46) as compared to the pre-pandemic and had higher odds of experiencing hepatic encephalopathy (OR:1.34; 95% CI:1.04, 1.73), spontaneous bacterial peritonitis (OR:1.88; 95% CI:1.03, 3.43), ascites (OR:1.40, 95% CI:1.10, 1.79), vasopressors (OR:1.68, 95% CI:1.14, 2.46) or inpatient mortality (OR:2.00, 95% CI:1.33, 2.99) than the pre-pandemic. CONCLUSIONS: Patients with alcohol-related liver disease experienced worse outcomes during the pandemic.


Assuntos
COVID-19 , Varizes Esofágicas e Gástricas , Encefalopatia Hepática , Hepatite Alcoólica , Humanos , Cirrose Hepática Alcoólica/epidemiologia , Cirrose Hepática Alcoólica/terapia , Encefalopatia Hepática/epidemiologia , Pandemias , Hepatite Alcoólica/diagnóstico , Hepatite Alcoólica/epidemiologia , Estudos Retrospectivos , Hemorragia Gastrointestinal , Prognóstico , COVID-19/epidemiologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/epidemiologia
2.
Pancreas ; 51(5): 422-426, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835114

RESUMO

OBJECTIVE: The coronavirus disease 2019 pandemic led to changes in individuals' behaviors and healthcare delivery. We examined the impact of these changes on the rates and clinical course of acute pancreatitis (AP). METHODS: Hospitalizations for AP from March 1 through August 31 in 2019 (baseline group) and the same period in 2020 (pandemic group) were retrospectively reviewed. Univariate and multivariate analyses were used for demographics and outcomes. RESULTS: Two hundred eighty subjects (315 admissions) were identified in 2019 and 237 subjects (264 admissions) in 2020. Subjects in the pandemic group were more likely to have systemic inflammatory response syndrome (40% vs 25%, P < 0.01), pancreatic necrosis (14% vs 10%, P = 0.03), and persistent organ failure (17% vs 9%, P = 0.01) compared with prepandemic. There was no difference in etiology of AP. A multivariable model indicates that increased comorbidities, prior pancreatitis, pancreatic necrosis, and prescription of opiates at discharge were associated with 30-day readmissions during the pandemic. CONCLUSIONS: Fewer patients were admitted for AP during the pandemic, suggesting that patients with milder symptoms avoided hospital interaction. Practices followed during the pandemic, especially avoidance of hospitalization and improved efficiency of hospital management, may reduce the burden of pancreatitis care in the future.


Assuntos
COVID-19 , Pancreatite Necrosante Aguda , Doença Aguda , COVID-19/epidemiologia , Hospitais , Humanos , Pandemias , Estudos Retrospectivos
4.
Protein Expr Purif ; 164: 105455, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31306746

RESUMO

Wolf-Hirschhorn Syndrome Candidate 1 (WHSC1; also known as NSD2) is a SET domain-containing histone lysine methyltransferase. A chromosomal translocation occurs in 15-20% of multiple myeloma patients and is associated with increased production of WHSC1 and poor clinical prognosis. To define the substrate requirements of NSD2, we established a platform for the large-scale production of recombinant polynucleosomes, based on authentic human histone proteins, expressed in E. coli, and complexed with linearized DNA. A brief survey of methyltransferases whose substrate requirements are recorded in the literature yielded expected results, lending credence to the fitness of our approach. This platform was readily 'codified' with respect to both position and extent of methylation at histone 3 lysines 18 and 36 and led to the conclusion that the most readily discernible activity of NSD2 in contact with a nucleosome substrate is dimethylation of histone 3 lysine 36. We further explored reaction mechanism, and conclude a processive, rather than distributive mechanism best describes the interaction of NSD2 with intact nucleosome substrates. The methods developed feature scale and flexibility and are suited to thorough pharmaceutical-scale drug discovery campaigns.


Assuntos
Escherichia coli/genética , Histona-Lisina N-Metiltransferase/genética , Nucleossomos/genética , Proteínas Repressoras/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HeLa , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Nucleossomos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Especificidade por Substrato
5.
Aging Cell ; 17(5): e12825, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30094915

RESUMO

Chronic kidney disease and associated comorbidities (diabetes, cardiovascular diseases) manifest with an accelerated ageing phenotype, leading ultimately to organ failure and renal replacement therapy. This process can be modulated by epigenetic and environmental factors which promote loss of physiological function and resilience to stress earlier, linking biological age with adverse outcomes post-transplantation including delayed graft function (DGF). The molecular features underpinning this have yet to be fully elucidated. We have determined a molecular signature for loss of resilience and impaired physiological function, via a synchronous genome, transcriptome and proteome snapshot, using human renal allografts as a source of healthy tissue as an in vivo model of ageing in humans. This comprises 42 specific transcripts, related through IFNγ signalling, which in allografts displaying clinically impaired physiological function (DGF) exhibited a greater magnitude of change in transcriptional amplitude and elevated expression of noncoding RNAs and pseudogenes, consistent with increased allostatic load. This was accompanied by increased DNA methylation within the promoter and intragenic regions of the DGF panel in preperfusion allografts with immediate graft function. Pathway analysis indicated that an inability to sufficiently resolve inflammatory responses was enabled by decreased resilience to stress and resulted in impaired physiological function in biologically older allografts. Cross-comparison with publically available data sets for renal pathologies identified significant transcriptional commonality for over 20 DGF transcripts. Our data are clinically relevant and important, as they provide a clear molecular signature for the burden of "wear and tear" within the kidney and thus age-related physiological capability and resilience.


Assuntos
Função Retardada do Enxerto/genética , Perfilação da Expressão Gênica , Adulto , Idoso , Processamento Alternativo/genética , Senescência Celular/genética , Estudos de Coortes , Função Retardada do Enxerto/imunologia , Função Retardada do Enxerto/patologia , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Perfusão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA
6.
Front Mol Neurosci ; 10: 333, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29089870

RESUMO

Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies.

7.
J Am Heart Assoc ; 6(5)2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487390

RESUMO

BACKGROUND: The amino acid response (AAR) is an evolutionarily conserved protective mechanism activated by amino acid deficiency through a key kinase, general control nonderepressible 2. In addition to mobilizing amino acids, the AAR broadly affects gene and protein expression in a variety of pathways and elicits antifibrotic, autophagic, and anti-inflammatory activities. However, little is known regarding its role in cardiac stress. Our aim was to investigate the effects of halofuginone, a prolyl-tRNA synthetase inhibitor, on the AAR pathway in cardiac fibroblasts, cardiomyocytes, and in mouse models of cardiac stress and failure. METHODS AND RESULTS: Consistent with its ability to inhibit prolyl-tRNA synthetase, halofuginone elicited a general control nonderepressible 2-dependent activation of the AAR pathway in cardiac fibroblasts as evidenced by activation of known AAR target genes, broad regulation of the transcriptome and proteome, and reversal by l-proline supplementation. Halofuginone was examined in 3 mouse models of cardiac stress: angiotensin II/phenylephrine, transverse aortic constriction, and acute ischemia reperfusion injury. It activated the AAR pathway in the heart, improved survival, pulmonary congestion, left ventricle remodeling/fibrosis, and left ventricular function, and rescued ischemic myocardium. In human cardiac fibroblasts, halofuginone profoundly reduced collagen deposition in a general control nonderepressible 2-dependent manner and suppressed the extracellular matrix proteome. In human induced pluripotent stem cell-derived cardiomyocytes, halofuginone blocked gene expression associated with endothelin-1-mediated activation of pathologic hypertrophy and restored autophagy in a general control nonderepressible 2/eIF2α-dependent manner. CONCLUSIONS: Halofuginone activated the AAR pathway in the heart and attenuated the structural and functional effects of cardiac stress.


Assuntos
Aminoácidos/metabolismo , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Insuficiência Cardíaca/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Piperidinas/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Quinazolinonas/farmacologia , Estresse Fisiológico , Aminoácidos/deficiência , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/metabolismo , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
8.
Curr Drug Saf ; 10(2): 190-2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25986039

RESUMO

Sulindac is a long-acting nonsteroidal anti-inflammatory drug (NSAID) widely used for the management of osteoarthritis, rheumatoid arthritis, ankylosing sponydlitis, and acute gouty arthritis. Reports of sulindac toxicity in the literature are rare. We report the case of a 22-year old male with a history of bipolar disorder who was brought to the emergency department after ingesting approximately 15 g of sulindac in a suicide attempt. He was found to have acute kidney injury and hyperbilirubinemia. Despite aggressive fluid resuscitation, his renal function progressively worsened requiring the initiation of hemodialysis. Ten days following ingestion of sulindac, he began to develop ischemic skin changes with a gangrenous appearance in his hands and feet. He continued to receive supportive treatment, and his acute kidney injury, hyperbillirubinemia, and ischemic skin necrosis eventually resolved. Clinicians should be aware of this long-acting NSAID and its ability to cause prolonged multisystem organ dysfunction.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Anti-Inflamatórios não Esteroides/intoxicação , Overdose de Drogas , Hiperbilirrubinemia/induzido quimicamente , Dermatopatias/induzido quimicamente , Sulindaco/intoxicação , Injúria Renal Aguda/terapia , Transtorno Bipolar/complicações , Hidratação , Humanos , Isquemia , Masculino , Necrose , Diálise Renal , Ressuscitação , Pele/irrigação sanguínea , Dermatopatias/patologia , Tentativa de Suicídio , Adulto Jovem
9.
Nat Chem Biol ; 10(3): 181-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390428

RESUMO

Although therapeutic interventions of signal-transduction cascades with targeted kinase inhibitors are a well-established strategy, drug-discovery efforts to identify targeted phosphatase inhibitors have proven challenging. Herein we report a series of allosteric, small-molecule inhibitors of wild-type p53-induced phosphatase (Wip1), an oncogenic phosphatase common to multiple cancers. Compound binding to Wip1 is dependent on a 'flap' subdomain located near the Wip1 catalytic site that renders Wip1 structurally divergent from other members of the protein phosphatase 2C (PP2C) family and that thereby confers selectivity for Wip1 over other phosphatases. Treatment of tumor cells with the inhibitor GSK2830371 increases phosphorylation of Wip1 substrates and causes growth inhibition in both hematopoietic tumor cell lines and Wip1-amplified breast tumor cells harboring wild-type TP53. Oral administration of Wip1 inhibitors in mice results in expected pharmacodynamic effects and causes inhibition of lymphoma xenograft growth. To our knowledge, GSK2830371 is the first orally active, allosteric inhibitor of Wip1 phosphatase.


Assuntos
Aminopiridinas/química , Dipeptídeos/química , Inibidores Enzimáticos/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Administração Oral , Regulação Alostérica , Motivos de Aminoácidos , Aminopiridinas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos SCID , Modelos Biológicos , Neoplasias , Proteína Fosfatase 2C
10.
Assay Drug Dev Technol ; 11(5): 308-25, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23772552

RESUMO

Small ubiquitin-like modifier (SUMO) belongs to the family of ubiquitin-like proteins (Ubls) that can be reversibly conjugated to target-specific lysines on substrate proteins. Although covalently sumoylated products are readily detectible in gel-based assays, there has been little progress toward the development of robust quantitative sumoylation assay formats for the evaluation of large compound libraries. In an effort to identify inhibitors of ubiquitin carrier protein 9 (Ubc9)-dependent sumoylation, a high-throughput fluorescence polarization assay was developed, which allows detection of Lys-1201 sumoylation, corresponding to the major site of functional sumoylation within the transcriptional repressor trichorhino-phalangeal syndrome type I protein (TRPS1). A minimal hexapeptide substrate peptide, TMR-VVK1201TEK, was used in this assay format to afford high-throughput screening of the GlaxoSmithKline diversity compound collection. A total of 728 hits were confirmed but no specific noncovalent inhibitors of Ubc9 dependent trans-sumoylation were found. However, several diaminopyrimidine compounds were identified as inhibitors in the assay with IC50 values of 12.5 µM. These were further characterized to be competent substrates which were subject to sumoylation by SUMO-Ubc9 and which were competitive with the sumoylation of the TRPS1 peptide substrates.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Mapeamento de Interação de Proteínas/métodos , Espectrometria de Fluorescência/métodos , Sumoilação/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Sítios de Ligação , Ligação Proteica , Proteínas Repressoras
11.
J Clin Neuromuscul Dis ; 14(3): 123-5, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23492465

RESUMO

Interferons (IFNs) have antiviral, antimitogenic, and immunostimulatory effects and are often used in the treatment of viral hepatitis and some neoplasms. Combination pegylated IFN-alpha and ribavirin therapy is currently recommended for the treatment of hepatitis C. Triple therapy, with the addition of a protease inhibitor, such as telaprevir or boceprevir, has recently become a mainstay of therapy for certain genotypes. There have also been reports outlining side effects associated with conventional IFN therapy and its immunostimulatory effects, which may cause autoimmune phenomena, including but not limited to Guillain-Barre syndrome, polymyositis, acute and chronic demyelinating polyneuropathy, and myasthenia gravis. Although a number of cases of interferon-induced myasthenia gravis have been reported, we present a case of interferon-induced myasthenia crisis that developed soon after retreatment of hepatitis C with combination interferon, ribavirin, and telaprevir.


Assuntos
Interferon-alfa/efeitos adversos , Miastenia Gravis/induzido quimicamente , Polietilenoglicóis/efeitos adversos , Hepatite C/tratamento farmacológico , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Interferon-alfa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Ribavirina/efeitos adversos , Ribavirina/uso terapêutico , Resultado do Tratamento
12.
Protein Expr Purif ; 73(2): 167-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20457255

RESUMO

Phosphoinositide 3-kinases have been targeted for therapeutic research because they are key components of a cell signaling cascade controlling proliferation, growth, and survival. Direct activation of the PI3Kalpha pathway contributes to the development and progression of solid tumors in breast, endometrial, colon, ovarian, and gastric cancers. In the context of a drug discovery effort, the availability of a robust crystallographic system is a means to understand the subtle differences between ATP competitive inhibitor interactions with the active site and their selectivity against other PI3Kinase enzymes. To generate a suitable recombinant design for this purpose, a p85alpha-p110alpha fusion system was developed which enabled the expression and purification of a stoichiometrically homogeneous, constitutively active enzyme for structure determination with potent ATP competitive inhibitors (Raha et al., in preparation) [56]. This approach has yielded preparations with activity and inhibition characteristics comparable to those of the full-length PI3Kalpha from which X-ray diffracting crystals were grown with inhibitors bound in the active site.


Assuntos
Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Fusão Gênica Artificial , Baculoviridae/metabolismo , Sítios de Ligação , Células Cultivadas , Classe II de Fosfatidilinositol 3-Quinases/química , Classe II de Fosfatidilinositol 3-Quinases/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Desenho de Fármacos , Concentração Inibidora 50 , Modelos Moleculares , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Spodoptera/citologia , Spodoptera/metabolismo , Difração de Raios X
14.
J Med Chem ; 51(21): 6631-4, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-18842034

RESUMO

Recent studies using known Rho-associated kinase isoform 1 (ROCK1) inhibitors along with cellular and molecular biology data have revealed a pivotal role of this enzyme in many aspects of cardiovascular function. Here we report a series of ROCK1 inhibitors which were originally derived from a dihydropyrimidinone core 1. Our efforts focused on the optimization of dihydropyrimidine 2, which resulted in the identification of a series of dihydropyrimidines with improved pharmacokinetics and P450 properties.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/enzimologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/química , Pirimidinas/uso terapêutico , Quinases Associadas a rho/antagonistas & inibidores , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Administração Oral , Aldeídos/química , Animais , Cristalografia por Raios X , Indazóis/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Ratos , Relação Estrutura-Atividade , Quinases Associadas a rho/metabolismo
15.
Anal Biochem ; 383(2): 311-5, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18814837

RESUMO

Differential activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway has been linked to cancer. Activation occurs through gene amplification and activating mutations. High-frequency mutations in the gene encoding the p110alpha catalytic subunit of PI3K (PIK3CA) have been observed in a variety of tumors including colon, brain, breast, ovarian, and gastric. Inhibition of PI3K kinase activity may provide a specific way to treat multiple types of human cancer. A scintillation proximity assay (SPA) was developed to detect phosphatidylinositol 3-kinase catalytic activity. Using this assay format, steady-state kinetic parameters were compared for the PI3K class IA enzymes p110alpha, p110beta, and p110delta, each coexpressed with the regulatory subunit p85alpha or splice variant p55alpha. Inhibition by the natural product wortmannin and LY294002 was detected with potencies consistent with alternate assay formats. Other biochemical assay formats have been described for phosphoinositide 3-kinases but each has its unique limitations. The simple, inexpensive, sensitive high-throughput nature of the SPA format has advanced our knowledge of isoform-specific enzymology and will facilitate the discovery of novel PI3K inhibitors.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Subunidades Proteicas/metabolismo , Contagem de Cintilação/métodos , Biocatálise/efeitos dos fármacos , Produtos Biológicos/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Microesferas , Inibidores de Fosfoinositídeo-3 Quinase , Subunidades Proteicas/antagonistas & inibidores , Titulometria
16.
Protein Sci ; 17(10): 1791-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18662907

RESUMO

VX-680, also known as MK-0457, is an ATP-competitive small molecule inhibitor of the Aurora kinases that has entered phase II clinical trials for the treatment of cancer. We have solved the cocrystal structure of AurA/TPX2/VX-680 at 2.3 A resolution. In the crystal structure, VX-680 binds to the active conformation of AurA. The glycine-rich loop in AurA adopts a unique bent conformation, forming a pi-pi interaction with the phenyl group of VX-680. In contrast, in the published AurA/VX-680 structure, VX-680 binds to AurA in the inactive conformation, interacting with a hydrophobic pocket only present in the inactive conformation. These data suggest that TPX2, a protein cofactor, can alter the binding mode of VX-680 with AurA. More generally, the presence of physiologically relevant cofactor proteins can alter the kinetics, binding interactions, and inhibition of enzymes, and studies with these multiprotein complexes may be beneficial to the discovery and optimization of enzyme inhibitors as therapeutic agents.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Associadas aos Microtúbulos/química , Proteínas Nucleares/química , Piperazinas/química , Proteínas Serina-Treonina Quinases/química , Proteínas Recombinantes/química , Aurora Quinases , Domínio Catalítico , Proteínas de Ciclo Celular/metabolismo , Cristalografia , Cristalografia por Raios X , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Piperazinas/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/metabolismo
17.
Biochem J ; 409(2): 519-24, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17877460

RESUMO

The PIK3CA gene, encoding the p110alpha catalytic subunit of Class IA PI3Ks (phosphoinositide 3-kinases), is frequently mutated in many human tumours. The three most common tumour-derived alleles of p110alpha, H1047R, E542K and E545K, were shown to potently activate PI3K signalling in human epithelial cells. In the present study, we examine the biochemical activity of the recombinantly purified PI3K oncogenic mutants. The kinetic characterizations of the wt (wild-type) and the three 'hot spot' PI3K mutants show that the mutants all have approx. 2-fold increase in lipid kinase activities. Interestingly, the phosphorylated IRS-1 (insulin receptor substrate-1) protein shows activation of the lipid kinase activity for the wt and H1047R but not E542K and E545K PI3Kalpha, suggesting that these mutations represent different mechanisms of lipid kinase activation and hence transforming activity in cancer cells.


Assuntos
Oncogenes , Fosfatidilinositol 3-Quinases/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Alelos , Domínio Catalítico , Classe I de Fosfatidilinositol 3-Quinases , Ativação Enzimática , Humanos , Proteínas Substratos do Receptor de Insulina , Cinética , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Tumorais Cultivadas
18.
J Biomol Screen ; 12(8): 1050-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17989425

RESUMO

Tumor suppressor p53 is typically maintained at low levels in normal cells. In response to cellular stresses, such as DNA damage, p53 is stabilized and can stimulate responses leading to cell cycle arrest or apoptosis. Corresponding to its central role in preventing propagation of damaged cells, mutation or deletion of p53 is found in nearly 50% of all human tumors. Mdm2 (mouse-d-minute 2) and its human ortholog (hmdm2 or hdm2) catalyze the ubiquitination of p53, targeting it for degradation via the proteosome. Thus, the activity of mdm2 is inversely correlated with p53 levels. Based on this, inhibition of human mdm2 activity by a small-molecule therapeutic will lead to net stabilization of p53 and be the basis for development of a novel cancer therapeutic. Previous high-throughput screening assays of mdm2 measured the autoubiquitination activity of mdm2, which occurs in the absence of an acceptor substrate such as p53. The major drawback to this approach is that inhibitors of mdm2 autoubiquitination may lead to a net stabilization of mdm2 and thus have the opposite effect of inhibitors that interfere with p53 ubiquitination. The authors describe the development, validation, and execution of a high-throughput screening measuring the ubiquitination of p53 by mdm2, with p53 labeled with europium and the other substrate (Ub-UbcH5b) labeled with a Cy5 on the ubiquitin. After confirming that known inhibitors are detected with this assay, it was successfully automated and used to query >600,000 compounds from the GlaxoSmithKline collection for mdm2 inhibitors.


Assuntos
Bioensaio/métodos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Catálise/efeitos dos fármacos , Európio/farmacologia , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração Inibidora 50 , Proteínas Proto-Oncogênicas c-mdm2/farmacologia , Reprodutibilidade dos Testes , Fatores de Tempo , Titulometria , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
19.
Biochemistry ; 46(36): 10287-95, 2007 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-17705509

RESUMO

The Aurora kinases are a family of serine/threonine kinases involved in mitosis. The expression of AurA is ubiquitous and cell cycle regulated. It is overexpressed in many tumor types, including breast, colon, and ovarian. TPX2 is a binding partner and activator of AurA. A fragment of TPX2 (residues 1-43) has been shown to be sufficient for binding, kinase activation, and protection from dephosphorylation. We have shown that the addition of TPX2(1-43) increases the catalytic efficiency of AurA. While TPX2 binding has no effect on the turnover number of AurA and does not change the reaction mechanism (characterized here to be a rapid equilibrium random mechanism), it increases the binding affinity of both ATP and a peptide substrate. We have also demonstrated differences in the inhibitor structure-activity relationship (SAR) in the presence or absence of TPX2(1-43). To better understand the differential SAR, we carried out computer modeling studies to gain insight into the effect of TPX2 on the binding interactions between AurA and inhibitors. Our working hypothesis is that TPX2 binding decreases the size and accessibility of a hydrophobic pocket, adjacent to the ATP site, to inhibitors.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacologia , Inibidores Enzimáticos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/farmacologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Difosfato de Adenosina/farmacologia , Alanina , Sequência de Aminoácidos , Aurora Quinases , Catálise/efeitos dos fármacos , Proteínas de Ciclo Celular/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Proteínas Associadas aos Microtúbulos/química , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Fosfopeptídeos/química , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Estaurosporina/farmacologia , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Titulometria
20.
J Med Chem ; 50(16): 3777-85, 2007 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-17636946

RESUMO

High-throughput screening for inhibitors of the human metalloprotease, methionine aminopeptidase-2 (MetAP2), identified a potent class of 3-anilino-5-benzylthio-1,2,4-triazole compounds. Efficient array and interative synthesis of triazoles led to rapid SAR development around the aniline, benzylthio, and triazole moeities. Evaluation of these analogs in a human MetAP2 enzyme assay led to the identification of several inhibitors with potencies in the 50-100 picomolar range. The deleterious effects on inhibitor potency by methylation of the anilino-triazole nitrogens, as well as the X-ray crystal structure of triazole 102 bound in the active site of MetAP2, confirm the key interactions between the triazole nitrogens, the active site cobalt atoms, and the His-231 side-chain. The structure has also provided a rationale for interpreting SAR within the triazole series. Key aniline (2-isopropylphenyl) and sulfur substituents (furanylmethyl) identified in the SAR studies led to the identification of potent inhibitors (103 and 104) of endothelial cell proliferation. Triazoles 103 and 104 also exhibited dose-dependent activity in an aortic ring tissue model of angiogenesis highlighting the potential utility of MetAP2 inhibitors as anticancer agents.


Assuntos
Aminopeptidases/antagonistas & inibidores , Inibidores da Angiogênese/síntese química , Furanos/síntese química , Metaloendopeptidases/antagonistas & inibidores , Tiazóis/síntese química , Tiofenos/síntese química , Triazóis/síntese química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Capilares/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/citologia , Furanos/química , Furanos/farmacologia , Técnicas In Vitro , Masculino , Modelos Moleculares , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Triazóis/química , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA