RESUMO
Despite a long period of application of metal implants, carbon-carbon medical composites are also widely used for bone defect prosthesis in surgery, dentistry, and oncology. Such implants might demonstrate excellent mechanical properties, but their biocompatibility and integration efficiency into the host should be improved. As a method of enhancing, the electrophoretic deposition of fine-dispersed hydroxyapatite (HAp) on porous carbon substrates might be recommended. With electron microscopy, energy dispersion X-ray and Raman spectroscopy, and X-ray diffraction, we found that the deposition and subsequent heat post-treatment (up to the temperature of 400 °C for 1 h) did not lead to any significant phase and chemical transformations of raw non-stoichometric HAp. The Ca/P ratio was ≈1.51 in the coatings. Their non-toxicity, cyto- and biocompatibility were confirmed by in vitro and in vivo studies and no adverse reactions and side effects had been detected in the test. The proposed coating and subsequent heat treatment procedures provided improved biological responses in terms of resorption and biocompatibility had been confirmed by histological, magnetic resonance and X-ray tomographic ex vivo studies on the resected implant-containing biopsy samples from the BDF1 mouse model. The obtained results are expected to be useful for modern medical material science and clinical applications.
Assuntos
Carbono , Materiais Revestidos Biocompatíveis , Animais , Camundongos , Carbono/química , Materiais Revestidos Biocompatíveis/química , Fosfatos de Cálcio , Durapatita/química , Próteses e Implantes , Difração de Raios XRESUMO
The development of magnesium calcium phosphate bone cements (MCPCs) has garnered substantial attention. MCPCs are bioactive and biodegradable and have appropriate mechanical and antimicrobial properties for use in reconstructive surgery. In this study, the cement powders based on a (Ca + Mg)/P = 2 system doped with Zn2+ at 0.5 and 1.0 wt.% were obtained and investigated. After mixing with a cement liquid, the structural and phase composition, morphology, chemical structure, setting time, compressive strength, degradation behavior, solubility, antibacterial activities, and in vitro behavior of the cement materials were examined. A high compressive strength of 48 ± 5 MPa (mean ± SD) was achieved for the cement made from Zn2+ 1.0 wt.%-substituted powders. Zn2+ introduction led to antibacterial activity against Staphylococcus aureus and Escherichia coli strains, with an inhibition zone diameter of up to 8 mm. Biological assays confirmed that the developed cement is cytocompatible and promising as a potential bone substitute in reconstructive surgery.
RESUMO
Bones are the fourth most frequent site of metastasis from malignant tumors, including breast cancer, prostate cancer, melanoma, etc. The bioavailability of bone tissue for chemotherapy drugs is extremely low. This requires a search for new approaches of targeted drug delivery to the tumor growth zone after surgery treatment. The aim of this work was to develop a method for octacalcium phosphate (OCP) bone graft functionalization with the cytostatic drug cisplatin to provide the local release of its therapeutic concentrations into the bone defect. OCP porous ceramic granules (OCP ceramics) were used as a platform for functionalization, and bisphosphonate zoledronic acid was used to mediate the interaction between cisplatin and OCP and enhance their binding strength. The obtained OCP materials were studied using scanning electron and light microscopy, high-performance liquid chromatography, atomic emission spectroscopy, and real-time PCR. In vitro and in vivo studies were performed on normal and tumor cell lines and small laboratory animals. The bioactivity of initial OCP ceramics was explored and the efficiency of OCP functionalization with cisplatin, zoledronic acid, and their combination was evaluated. The kinetics of drug release and changes in ceramics properties after functionalization were studied. It was established that zoledronic acid changed the physicochemical and bioactive properties of OCP ceramics and prolonged cisplatin release from the ceramics. In vitro and in vivo experiments confirmed the biocompatibility, osteoconductivity, and osteoinductivity, as well as cytostatic and antitumor properties of the obtained materials. The use of OCP ceramics functionalized with a cytostatic via the described method seems to be promising in clinics when primary or metastatic tumors of the bone tissue are removed.
Assuntos
Cisplatino , Citostáticos , Masculino , Animais , Ácido Zoledrônico/farmacologia , Cisplatino/farmacologia , Fosfatos de Cálcio/química , Regeneração ÓsseaRESUMO
Sr2+-substituted ß-tricalcium phosphate (ß-TCP) powders were synthesized using the mechano-chemical activation method with subsequent pressing and sintering to obtain ceramics. The concentration of Sr2+ in the samples was 0 (non-substituted TCP, as a reference), 3.33 (0.1SrTCP), and 16.67 (0.5SrTCP) mol.% with the expected Ca3(PO4)2, Ca2.9Sr0.1(PO4)2, and Ca2.5Sr0.5(PO4)2 formulas, respectively. The chemical compositions were confirmed by the energy-dispersive X-ray spectrometry (EDX) and the inductively coupled plasma optical emission spectroscopy (ICP-OES) methods. The study of the phase composition of the synthesized powders and ceramics by the powder X-ray diffraction (PXRD) method revealed that ß-TCP is the main phase in all compounds except 0.1SrTCP, in which the apatite (Ap)-type phase was predominant. TCP and 0.5SrTCP ceramics were soaked in the standard saline solution for 21 days, and the phase analysis revealed the partial dissolution of the initial ß-TCP phase with the formation of the Ap-type phase and changes in the microstructure of the ceramics. The Sr2+ ion release from the ceramic was measured by the ICP-OES. The human osteosarcoma MG-63 cell line was used for viability, adhesion, spreading, and cytocompatibility studies. The results show that the introduction of Sr2+ ions into the ß-TCP improved cell adhesion, proliferation, and cytocompatibility of the prepared samples. The obtained results provide a base for the application of the Sr2+-substituted ceramics in model experiments in vivo.
Assuntos
Solução Salina , Estrôncio , Apatitas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Cerâmica/química , Cerâmica/farmacologia , Humanos , Íons , Pós , Estrôncio/química , Estrôncio/farmacologia , Difração de Raios XRESUMO
Epigenetic alterations represent promising therapeutic targets in cancer treatment. Recently it was revealed that small molecules have the potential to act as microRNA silencers. Capacity to bind the discrete stem-looped structure of pre-miR-21 and prevent its maturation opens opportunities to utilize such compounds for the prevention of initiation, progression, and chemoresistance of cancer. Molecular simulations performed earlier identified 3,3'-diindolylmethane (DIM) as a potent microRNA-21 antagonist. However, data on DIM and microRNA-21 interplay is controversial, which may be caused by the limitations of the cell lines.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Indóis/farmacologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Idoso , Neoplasias da Mama/patologia , Ciclofosfamida/farmacologia , Feminino , Humanos , Metotrexato/farmacologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Organoides/patologia , Cultura Primária de CélulasRESUMO
Human platelet lysate (HPL) is a promising alternative to fetal calf serum (FCS) for the expansion of adipose tissue mesenchymal stromal cells (AT-MSCs) for translational medicine applications. However, some biological effects of HPL are still to be elucidated. We aimed to compare complex characteristics, such as cell morphology, proliferative activity, differentiation potential, and especially monolayer recovery, DNA integrity, and the gene expression pattern, between AT-MSCs cultured with HPL or FCS. Primary AT-MSC cultures were expanded in medium containing FCS or pooled HPL. Cell growth and proliferation were estimated by cell doubling time and the monolayer formation rate, while migration was assessed by wound-healing assay. The capacity for adipogenic and osteogenic differentiation was evaluated by alkaline phosphatase and Oil Red O staining. DNA integrity was evaluated by comet assay, and analysis of gene expression by real-time PCR. Media supplemented with HPL or FCS provided a similar surface immunophenotype, cell morphology (except some cell dimensions and a bigger colony size in HPL), DNA integrity, and rate of wound healing. Meanwhile, AT-MSC proliferated more intensively in HPL-supplemented media (especially at 5% HPL) and had a reduced doubling population time. AT-MSC in HPL had increased adipogenic potential and similar osteogenic potential in comparison with FCS. Our results indicate the feasibility and evident prospects for the use of pooled HPL as an alternative to FCS and safe non-xenogenic growth supplement for ex vivo expansion of clinical-grade AT-MSCs for regenerative medicine purposes.