Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
Cardiovasc Res ; 120(2): 164-173, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38165268

RESUMO

AIMS: The mitochondrial dynamics protein Mitofusin 2 (MFN2) coordinates critical cellular processes including mitochondrial bioenergetics, quality control, and cell viability. The NF-κB kinase IKKß suppresses mitochondrial injury in doxorubicin cardiomyopathy, but the underlying mechanism is undefined. METHODS AND RESULTS: Herein, we identify a novel signalling axis that functionally connects IKKß and doxorubicin cardiomyopathy to a mechanism that impinges upon the proteasomal stabilization of MFN2. In contrast to vehicle-treated cells, MFN2 was highly ubiquitinated and rapidly degraded by the proteasomal-regulated pathway in cardiac myocytes treated with doxorubicin. The loss of MFN2 activity resulted in mitochondrial perturbations, including increased reactive oxygen species (ROS) production, impaired respiration, and necrotic cell death. Interestingly, doxorubicin-induced degradation of MFN2 and mitochondrial-regulated cell death were contingent upon IKKß kinase activity. Notably, immunoprecipitation and proximity ligation assays revealed that IKKß interacted with MFN2 suggesting that MFN2 may be a phosphorylation target of IKKß. To explore this possibility, mass spectrometry analysis identified a novel MFN2 phospho-acceptor site at serine 53 that was phosphorylated by wild-type IKKß but not by a kinase-inactive mutant IKKßK-M. Based on these findings, we reasoned that IKKß-mediated phosphorylation of serine 53 may influence MFN2 protein stability. Consistent with this view, an IKKß-phosphomimetic MFN2 (MFN2S53D) was resistant to proteasomal degradation induced by doxorubicin whereas wild-type MFN2 and IKKß-phosphorylation defective MFN2 mutant (MFNS53A) were readily degraded in cardiac myocytes treated with doxorubicin. Concordantly, gain of function of IKKß or MFN2S53D suppressed doxorubicin-induced mitochondrial injury and cell death. CONCLUSIONS: The findings of this study reveal a novel survival pathway for IKKß that is mutually dependent upon and obligatory linked to the phosphorylation and stabilization of the mitochondrial dynamics protein MFN2.


Assuntos
Cardiomiopatias , Quinase I-kappa B , Humanos , Quinase I-kappa B/metabolismo , Transdução de Sinais , Doxorrubicina , Proteínas Mitocondriais/metabolismo , Serina
5.
Can J Cardiol ; 39(12): 1772-1780, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37652255

RESUMO

Circadian rhythms are 24-hour cycles that regulate physical, mental, and behavioural changes of most living organisms. In the heart, circadian rhythms regulate processes such as heart rate, blood pressure, blood coagulability, and vascular tone. However, in addition to regulating physiologic processes, circadian rhythms regulate pathophysiologic processes in the heart. In this regard, circadian rhythms regulate the onset, severity, and outcome of many cardiovascular diseases (CVDs), including myocardial infarction, diabetic cardiomyopathy, doxorubicin (Dox)-induced cardiotoxicity, and heart failure. Notably, the underlying mechanism of many of these diseases is linked to impaired cellular quality control processes, such as autophagy. Autophagy is a homeostatic cellular process that regulates the removal of damaged cellular components, allowing their degradation and recycling into their basic constituents for production of cellular energy. Many studies from recent years point to a regulatory link between autophagy and circadian machinery in the control of CVDs. In this review, we highlight the recent discoveries in the field of circadian-induced autophagy in the heart and provide the molecular mechanisms and signalling pathways that underlie the crosstalk between autophagy and clock gene control in response to cardiac injury. Understanding the mechanisms that underlie circadian-induced autophagy in response to cardiac stress may prove to be beneficial in developing novel therapeutic approaches to treat cardiac disease.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Humanos , Doenças Cardiovasculares/metabolismo , Ritmo Circadiano/genética , Autofagia/genética , Coração
8.
Mol Cell Biochem ; 478(9): 2029-2040, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36607523

RESUMO

Anthracyclines such as doxorubicin (Dox) are widely used to treat a variety of adult and childhood cancers, however, a major limitation to many of these compounds is their propensity for inducing heart failure. A naturally occurring polyphenolic compound such as Ellagic acid (EA) has been shown by our laboratory to mitigate the cardiotoxic effects of Dox, however, the effects of EA on cancer cell viability have not been established. In this study, we explored the effects of EA alone and in combination with Dox on cancer cell viability and tumorigenesis. Herein, we show that EA induces cell cycle exit and reduces proliferation in colorectal cancer (HCT116) and breast adenocarcinoma cells (MCF7). We show that EA promotes cell cycle exit by a mechanism that inhibits mitochondrial dynamics protein Drp-1. EA treatment of HCT116 and MCF7 cells resulted in a hyperfused mitochondrial morphology that coincided with mitochondrial perturbations including loss of mitochondrial membrane potential, impaired respiratory capacity. Moreover, impaired mitochondrial function was accompanied by a reduction in cell cycle and proliferation markers, CDK1, Ki67, and Cyclin B. This resulted in a reduction in proliferation and widespread death of cancer cells. Furthermore, while Dox treatment alone promoted cell death in both HCT116 and MCF7 cancer cell lines, EA treatment lowered the effective dose of Dox to promote cell death. Hence, the findings of the present study reveal a previously unreported anti-tumor property of EA that impinges on mitochondrial dynamics protein, Drp-1 which is crucial for cell division and tumorigenesis. The ability of EA to lower the therapeutic threshold of Dox for inhibiting cancer cell growth may prove beneficial in reducing cardiotoxicity in cancer patients undergoing anthracycline therapy.


Assuntos
Ácido Elágico , Neoplasias , Humanos , Criança , Ácido Elágico/farmacologia , Dinâmica Mitocondrial , Neoplasias/tratamento farmacológico , Doxorrubicina/farmacologia , Antibióticos Antineoplásicos/farmacologia , Proteínas Mitocondriais , Proliferação de Células , Carcinogênese , Apoptose
9.
Can J Physiol Pharmacol ; 101(1): 1-7, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318826

RESUMO

Cardiovascular disease is the leading cause of morbidity and mortality worldwide. However, sex differences can impact differently the etiology and outcome of cardiovascular disease when comparing men and women. Women have unique genetic and hormonal risk factors that can be associated with the development of cardiovascular diseases. Furthermore, certain phenotypes of cardiovascular diseases are more prevalent to women. Molecular clocks control circadian rhythms of different physiological systems in our body, including the cardiovascular system. Increased evidence in recent years points to a link between cardiovascular disease and regulation by circadian rhythms. However, the difference between circadian regulation of cardiovascular disease in women and men is poorly understood. In this review, we highlight the recent advances in circadian-regulated cardiovascular diseases with a specific focus on the pathogenesis of heart disease in women. Understanding circadian-regulated pathways and sex-specific differences between men and women may contribute to better diagnosis and development of sex-targeted interventions to better treat cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Relógios Circadianos , Feminino , Masculino , Humanos , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Fatores de Risco
11.
Artigo em Inglês | MEDLINE | ID: mdl-36150629

RESUMO

Circadian mechanisms have been associated with the pathogenesis of a variety of cardiovascular diseases, including myocardial ischemia-reperfusion injury (I-R). Myocardial ischemia resulting from impaired oxygen delivery to cardiac muscle sets into motion a cascade of cellular events that paradoxically triggers greater cardiac dysfunction upon reinstitution of coronary blood supply, a phenomenon known as I-R. I-R injury has been attributed to a number of cellular defects including increased reactive oxygen species (ROS), increased intracellular calcium and impaired mitochondrial bioenergetics that ultimately lead to cardiac cell death, ventricular remodeling and heart failure. Emerging evidence has identified a strong correlation between cellular defects that underlie I-R and the disrupted circadian. In fact, recent studies have shown that circadian dysfunction exacerbates cardiac injury following MI from impaired cellular quality control mechanisms such as autophagy, which are vital in the clearance of damaged cellular proteins and organelles such as mitochondria from the cell. The accumulation of cellular debris is posited as the central underlying cause of excessive cardiac cell death and ventricular dysfunction following MI. The complexities that govern the interplay between circadian biology and I-R injury following MI is at its infancy and understanding how circadian misalignment, such as in shift workers impacts I-R injury is of great scientific and clinical importance toward development of new therapeutic strategies using chronotherapy and circadian regulation to mitigate cardiac injury and improve cardiac outcomes after injury. In this review, we highlight recent advances in circadian biology and adaptive cellular quality control mechanisms that influence cardiac injury in response to MI injury with a specific focus on how circadian biology can be utilized to further cardiovascular medicine and patient care.

12.
Circulation ; 146(12): 934-954, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35983756

RESUMO

BACKGROUND: Cytokines such as tumor necrosis factor-α (TNFα) have been implicated in cardiac dysfunction and toxicity associated with doxorubicin (DOX). Although TNFα can elicit different cellular responses, including survival or death, the mechanisms underlying these divergent outcomes in the heart remain cryptic. The E3 ubiquitin ligase TRAF2 (TNF receptor associated factor 2) provides a critical signaling platform for K63-linked polyubiquitination of RIPK1 (receptor interacting protein 1), crucial for nuclear factor-κB (NF-κB) activation by TNFα and survival. Here, we investigate alterations in TNFα-TRAF2-NF-κB signaling in the pathogenesis of DOX cardiotoxicity. METHODS: Using a combination of in vivo (4 weekly injections of DOX 5 mg·kg-1·wk-1) in C57/BL6J mice and in vitro approaches (rat, mouse, and human inducible pluripotent stem cell-derived cardiac myocytes), we monitored TNFα levels, lactate dehydrogenase, cardiac ultrastructure and function, mitochondrial bioenergetics, and cardiac cell viability. RESULTS: In contrast to vehicle-treated mice, ultrastructural defects, including cytoplasmic swelling, mitochondrial perturbations, and elevated TNFα levels, were observed in the hearts of mice treated with DOX. While investigating the involvement of TNFα in DOX cardiotoxicity, we discovered that NF-κB was readily activated by TNFα. However, TNFα-mediated NF-κB activation was impaired in cardiac myocytes treated with DOX. This coincided with loss of K63- linked polyubiquitination of RIPK1 from the proteasomal degradation of TRAF2. Furthermore, TRAF2 protein abundance was markedly reduced in hearts of patients with cancer treated with DOX. We further established that the reciprocal actions of the ubiquitinating and deubiquitinating enzymes cellular inhibitors of apoptosis 1 and USP19 (ubiquitin-specific peptidase 19), respectively, regulated the proteasomal degradation of TRAF2 in DOX-treated cardiac myocytes. An E3-ligase mutant of cellular inhibitors of apoptosis 1 (H588A) or gain of function of USP19 prevented proteasomal degradation of TRAF2 and DOX-induced cell death. Furthermore, wild-type TRAF2, but not a RING finger mutant defective for K63-linked polyubiquitination of RIPK1, restored NF-κB signaling and suppressed DOX-induced cardiac cell death. Last, cardiomyocyte-restricted expression of TRAF2 (cardiac troponin T-adeno-associated virus 9-TRAF2) in vivo protected against mitochondrial defects and cardiac dysfunction induced by DOX. CONCLUSIONS: Our findings reveal a novel signaling axis that functionally connects the cardiotoxic effects of DOX to proteasomal degradation of TRAF2. Disruption of the critical TRAF2 survival pathway by DOX sensitizes cardiac myocytes to TNFα-mediated necrotic cell death and DOX cardiotoxicity.


Assuntos
Cardiomiopatias , NF-kappa B , Fator 2 Associado a Receptor de TNF , Animais , Apoptose , Cardiomiopatias/metabolismo , Cardiotoxicidade , Enzimas Desubiquitinantes/metabolismo , Doxorrubicina/toxicidade , Endopeptidases , Humanos , Lactato Desidrogenases/metabolismo , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Ratos , Fator 2 Associado a Receptor de TNF/genética , Troponina T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/farmacologia
13.
Cells ; 11(14)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35883637

RESUMO

Hypoxia exerts broad effects on cardiomyocyte function and viability, ranging from altered metabolism and mitochondrial physiology to apoptotic or necrotic cell death. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a key regulator of cardiomyocyte metabolism and mitochondrial function and is down-regulated in hypoxia; however, the underlying mechanism is incompletely resolved. Using primary rat cardiomyocytes coupled with electrophoretic mobility shift and luciferase assays, we report that hypoxia impaired mitochondrial energetics and resulted in an increase in nuclear localization of the Nuclear Factor-κB (NF-κB) p65 subunit, and the association of p65 with the PGC-1α proximal promoter. Tumor necrosis factor α (TNFα), an activator of NF-κB signaling, similarly reduced PGC-1α expression and p65 binding to the PGC-1α promoter in a dose-dependent manner, and TNFα-mediated down-regulation of PGC-1α expression could be reversed by the NF-κB inhibitor parthenolide. RNA-seq analysis revealed that cardiomyocytes isolated from p65 knockout mice exhibited alterations in genes associated with chromatin remodeling. Decreased PGC-1α promoter transactivation by p65 could be partially reversed by the histone deacetylase inhibitor trichostatin A. These results implicate NF-κB signaling, and specifically p65, as a potent inhibitor of PGC-1α expression in cardiac myocyte hypoxia.


Assuntos
Hipóxia , Miócitos Cardíacos , NF-kappa B , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Hipóxia/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
14.
Nat Commun ; 13(1): 3775, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798717

RESUMO

Mitofusins reside on the outer mitochondrial membrane and regulate mitochondrial fusion, a physiological process that impacts diverse cellular processes. Mitofusins are activated by conformational changes and subsequently oligomerize to enable mitochondrial fusion. Here, we identify small molecules that directly increase or inhibit mitofusins activity by modulating mitofusin conformations and oligomerization. We use these small molecules to better understand the role of mitofusins activity in mitochondrial fusion, function, and signaling. We find that mitofusin activation increases, whereas mitofusin inhibition decreases mitochondrial fusion and functionality. Remarkably, mitofusin inhibition also induces minority mitochondrial outer membrane permeabilization followed by sub-lethal caspase-3/7 activation, which in turn induces DNA damage and upregulates DNA damage response genes. In this context, apoptotic death induced by a second mitochondria-derived activator of caspases (SMAC) mimetic is potentiated by mitofusin inhibition. These data provide mechanistic insights into the function and regulation of mitofusins as well as small molecules to pharmacologically target mitofusins.


Assuntos
GTP Fosfo-Hidrolases , Mitocôndrias , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais
17.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166354, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35065229

RESUMO

Autophagy is a vital cellular mechanism that controls the removal of damaged or dysfunctional cellular components. Autophagy allows the degradation and recycling of damaged proteins and organelles into their basic constituents of amino acids and fatty acids for cellular energy production. Under basal conditions, autophagy is essential for the maintenance of cell homeostasis and function. However, during cell stress, excessive activation of autophagy can be destructive and lead to cell death. Autophagy plays a crucial role in the cardiovascular system and helps to maintain normal cardiac function. During ischemia- reperfusion, autophagy can be adaptive or maladaptive depending on the timing and extent of activation. In this review, we highlight the molecular mechanisms and signaling pathways that underlie autophagy in response to cardiac stress and therapeutic approaches to modulate autophagy by pharmacological interventions. Finally, we also discuss the intersection between autophagy and circadian regulation in the heart. Understanding the mechanisms that underlie autophagy following cardiac injury can be translated to clinical cardiology use toward improved patient treatment and outcomes.


Assuntos
Autofagia , Ritmo Circadiano/fisiologia , Miocárdio/metabolismo , Autofagia/efeitos dos fármacos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Ritmo Circadiano/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Polifenóis/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
20.
Autophagy ; 17(11): 3794-3812, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34085589

RESUMO

Cardiac function is highly reliant on mitochondrial oxidative metabolism and quality control. The circadian Clock gene is critically linked to vital physiological processes including mitochondrial fission, fusion and bioenergetics; however, little is known of how the Clock gene regulates these vital processes in the heart. Herein, we identified a putative circadian CLOCK-mitochondrial interactome that gates an adaptive survival response during myocardial ischemia. We show by transcriptome and gene ontology mapping in CLOCK Δ19/Δ19 mouse that Clock transcriptionally coordinates the efficient removal of damaged mitochondria during myocardial ischemia by directly controlling transcription of genes required for mitochondrial fission, fusion and macroautophagy/autophagy. Loss of Clock gene activity impaired mitochondrial turnover resulting in the accumulation of damaged reactive oxygen species (ROS)-producing mitochondria from impaired mitophagy. This coincided with ultrastructural defects to mitochondria and impaired cardiac function. Interestingly, wild type CLOCK but not mutations of CLOCK defective for E-Box binding or interaction with its cognate partner ARNTL/BMAL-1 suppressed mitochondrial damage and cell death during acute hypoxia. Interestingly, the autophagy defect and accumulation of damaged mitochondria in CLOCK-deficient cardiac myocytes were abrogated by restoring autophagy/mitophagy. Inhibition of autophagy by ATG7 knockdown abrogated the cytoprotective effects of CLOCK. Collectively, our results demonstrate that CLOCK regulates an adaptive stress response critical for cell survival by transcriptionally coordinating mitochondrial quality control mechanisms in cardiac myocytes. Interdictions that restore CLOCK activity may prove beneficial in reducing cardiac injury in individuals with disrupted circadian CLOCK.Abbreviations: ARNTL/BMAL1: aryl hydrocarbon receptor nuclear translocator-like; ATG14: autophagy related 14; ATG7: autophagy related 7; ATP: adenosine triphosphate; BCA: bovine serum albumin; BECN1: beclin 1, autophagy related; bHLH: basic helix- loop-helix; CLOCK: circadian locomotor output cycles kaput; CMV: cytomegalovirus; COQ5: coenzyme Q5 methyltransferase; CQ: chloroquine; CRY1: cryptochrome 1 (photolyase-like); DNM1L/DRP1: dynamin 1-like; EF: ejection fraction; EM: electron microscopy; FS: fractional shortening; GFP: green fluorescent protein; HPX: hypoxia; i.p.: intraperitoneal; I-R: ischemia-reperfusion; LAD: left anterior descending; LVIDd: left ventricular internal diameter diastolic; LVIDs: left ventricular internal diameter systolic; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFN2: mitofusin 2; MI: myocardial infarction; mPTP: mitochondrial permeability transition pore; NDUFA4: Ndufa4, mitochondrial complex associated; NDUFA8: NADH: ubiquinone oxidoreductase subunit A8; NMX: normoxia; OCR: oxygen consumption rate; OPA1: OPA1, mitochondrial dynamin like GTPase; OXPHOS: oxidative phosphorylation; PBS: phosphate-buffered saline; PER1: period circadian clock 1; PPARGC1A/PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; qPCR: quantitative real-time PCR; RAB7A: RAB7, member RAS oncogene family; ROS: reactive oxygen species; RT: room temperature; shRNA: short hairpin RNA; siRNA: small interfering RNA; TFAM: transcription factor A, mitochondrial; TFEB: transcription factor EB; TMRM: tetra-methylrhodamine methyl ester perchlorate; WT: wild -type; ZT: zeitgeber time.


Assuntos
Proteínas CLOCK/fisiologia , Sobrevivência Celular , Isquemia/metabolismo , Mitofagia , Miócitos Cardíacos/fisiologia , Animais , Proteínas CLOCK/metabolismo , Sobrevivência Celular/fisiologia , Isquemia/fisiopatologia , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Mitofagia/fisiologia , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA