Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Cureus ; 16(8): e68039, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39347162

RESUMO

Background and objective Female pattern hair loss (FPHL), also known as androgenetic alopecia (AGA), is a condition where the hair follicles of genetically susceptible women gradually shrink and become thinner, leading to hair loss in a particular pattern. Metabolic syndrome (MS) is a collection of conditions that co-occur, increasing the risk of heart disease, stroke, and type 2 diabetes. This study aims to determine the prevalence of MS in premenopausal women in patients with FPHL. Methods and materials We conducted a case-control, hospital-based observational study at our institution for a period of two years, which included 62 patients, with 31 cases (patients with FPHL) and 31 controls (patients without FPHL). Results In some cases, the mean age was 29.81 years, while in controls, it was 28.84 years. The mean waist circumference (WC) in cases was 81.9 +/- 11.75 cm, and in controls, it was 72.65 +/- 8.86 cm, with a statistically significant p-value of 0.001. In some cases, the mean body mass index (BMI) was 26.28 +/- 4.09 kg/m2, and in controls, it was 24.52 +/- 2.78 kg/m2, with a statistically significant p-value of 0.013. Between cases and controls, there was no significant difference in the homeostatic model assessment of insulin resistance (HOMA-IR), fasting blood glucose (FBG), fasting triglyceride levels, fasting HDL, and fasting insulin levels. Conclusion The study found a significant association between WC and BMI in patients with FPHL in premenopausal women. This highlights the need for early screening and preventive measures for MS in women presenting with FPHL.

2.
Sci Rep ; 14(1): 19574, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179700

RESUMO

This is an interim analysis of the Beta-blocker (Propranolol) use in traumatic brain injury (TBI) based on the high-sensitive troponin status (BBTBBT) study. The BBTBBT is an ongoing double-blind placebo-controlled randomized clinical trial with a target sample size of 771 patients with TBI. We sought, after attaining 50% of the sample size, to explore the impact of early administration of beta-blockers (BBs) on the adrenergic surge, pro-inflammatory cytokines, and the TBI biomarkers linked to the status of high-sensitivity troponin T (HsTnT). Patients were stratified based on the severity of TBI using the Glasgow coma scale (GCS) and HsTnT status (positive vs negative) before randomization. Patients with positive HsTnT (non-randomized) received propranolol (Group-1; n = 110), and those with negative test were randomized to receive propranolol (Group-2; n = 129) or placebo (Group-3; n = 111). Propranolol was administered within 24 h of injury for 6 days, guided by the heart rate (> 60 bpm), systolic blood pressure (≥ 100 mmHg), or mean arterial pressure (> 70 mmHg). Luminex and ELISA-based immunoassays were used to quantify the serum levels of pro-inflammatory cytokines (Interleukin (IL)-1ß, IL-6, IL-8, and IL-18), TBI biomarkers [S100B, Neuron-Specific Enolase (NSE), and epinephrine]. Three hundred and fifty patients with comparable age (mean 34.8 ± 9.9 years) and gender were enrolled in the interim analysis. Group 1 had significantly higher baseline levels of IL-6, IL-1B, S100B, lactate, and base deficit than the randomized groups (p = 0.001). Group 1 showed a significant temporal reduction in serum IL-6, IL-1ß, epinephrine, and NSE levels from baseline to 48 h post-injury (p = 0.001). Patients with severe head injuries had higher baseline levels of IL-6, IL-1B, S100B, and HsTnT than mild and moderate TBI (p = 0.01). HsTnT levels significantly correlated with the Injury Severity Score (ISS) (r = 0.275, p = 0.001), GCS (r = - 0.125, p = 0.02), and serum S100B (r = 0.205, p = 0.001). Early Propranolol administration showed a significant reduction in cytokine levels and TBI biomarkers from baseline to 48 h post-injury, particularly among patients with positive HsTnT, indicating the potential role in modulating inflammation post-TBI.Trial registration: ClinicalTrials.gov NCT04508244. It was registered first on 11/08/2020. Recruitment started on 29 December 2020 and is ongoing. The study was partly presented at the 23rd European Congress of Trauma and Emergency Surgery (ECTES), April 28-30, 2024, in Estoril, Lisbon, Portugal.


Assuntos
Antagonistas Adrenérgicos beta , Biomarcadores , Lesões Encefálicas Traumáticas , Propranolol , Troponina T , Humanos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/sangue , Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/uso terapêutico , Biomarcadores/sangue , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Troponina T/sangue , Propranolol/administração & dosagem , Propranolol/uso terapêutico , Método Duplo-Cego , Escala de Coma de Glasgow , Citocinas/sangue , Subunidade beta da Proteína Ligante de Cálcio S100/sangue
3.
Cureus ; 16(7): e64288, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39130974

RESUMO

Pyoderma gangrenosum (PG) is an uncommon inflammatory disorder that exhibits a range of clinical manifestations and levels of severity. It frequently occurs alongside an underlying condition, most often inflammatory bowel disease. PG, Sweet syndrome, palisaded neutrophilic granulomatous dermatitis (PNGD), interstitial granulomatous dermatitis (IGD) and rheumatoid neutrophilic dermatitis may be associated with rheumatoid arthritis (RA). We present a case of a 65-year-old woman with disseminated dermatosis to the hands, abdomen, buttocks, and lower limbs. The dermatosis presented with numerous ulcers of varying shapes, featuring clean bases, undermined edges, and a purplish erythematous appearance. Further investigations, including imaging studies and RA factor and anti-cyclic citrullinated peptide (anti-CCP) levels, led us to the diagnosis of RA. This case indicates that RA may be frequently undiagnosed and untreated in other patients with PG, as ulcers on the lower extremities can often be the main reason for seeking medical attention.

4.
Pathol Res Pract ; 260: 155465, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39018927

RESUMO

Fatty acid synthase (FASN) is a critical enzyme essential for the production of fats in the body. The abnormal expression of FASN is associated with different types of malignancies, including ovarian cancer. FASN plays a crucial role in cell growth and survival as a metabolic oncogene, although the specific processes that cause its dysregulation are still unknown. FASN interacts with signaling pathways linked to the progression of cancer. Pharmacologically inhibiting or inactivating the FASN gene has shown potential in causing the death of cancer cells, offering a possible treatment approach. This review examines the function of FASN in ovarian cancer, namely its level of expression, influence on the advancement of the disease, and its potential as a target for therapeutic interventions.


Assuntos
Ácido Graxo Sintases , Neoplasias Ovarianas , Humanos , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/enzimologia , Feminino , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/antagonistas & inibidores , Metástase Neoplásica , Transdução de Sinais , Animais , Terapia de Alvo Molecular , Ácido Graxo Sintase Tipo I
5.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38794148

RESUMO

The growing global burden of malignant tumors with increasing incidence and mortality rates underscores the urgent need for more effective and less toxic therapeutic options. Herbal compounds are being increasingly studied for their potential to meet these needs due to their reduced side effects and significant efficacy. Pristimerin (PS), a triterpenoid from the quinone formamide class derived from the Celastraceae and Hippocrateaceae families, has emerged as a potent anticancer agent. It exhibits broad-spectrum anti-tumor activity across various cancers such as breast, pancreatic, prostate, glioblastoma, colorectal, cervical, and lung cancers. PS modulates several key cellular processes, including apoptosis, autophagy, cell migration and invasion, angiogenesis, and resistance to chemotherapy, targeting crucial signaling pathways such as those involving NF-κB, p53, and STAT3, among others. The main objective of this review is to provide a comprehensive synthesis of the current literature on PS, emphasizing its mechanisms of action and molecular targets with the utmost clarity. It discusses the comparative advantages of PS over current cancer therapies and explores the implications for future research and clinical applications. By delineating the specific pathways and targets affected by PS, this review seeks to offer valuable insights and directions for future research in this field. The information gathered in this review could pave the way for the successful development of PS into a clinically applicable anticancer therapy.

6.
Brain ; 147(6): 2053-2068, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38739752

RESUMO

Aggregation of the RNA-binding protein TAR DNA binding protein (TDP-43) is a hallmark of TDP-proteinopathies including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). As TDP-43 aggregation and dysregulation are causative of neuronal death, there is a special interest in targeting this protein as a therapeutic approach. Previously, we found that TDP-43 extensively co-aggregated with the dual function protein GEF (guanine exchange factor) and RNA-binding protein rho guanine nucleotide exchange factor (RGNEF) in ALS patients. Here, we show that an N-terminal fragment of RGNEF (NF242) interacts directly with the RNA recognition motifs of TDP-43 competing with RNA and that the IPT/TIG domain of NF242 is essential for this interaction. Genetic expression of NF242 in a fruit fly ALS model overexpressing TDP-43 suppressed the neuropathological phenotype increasing lifespan, abolishing motor defects and preventing neurodegeneration. Intracerebroventricular injections of AAV9/NF242 in a severe TDP-43 murine model (rNLS8) improved lifespan and motor phenotype, and decreased neuroinflammation markers. Our results demonstrate an innovative way to target TDP-43 proteinopathies using a protein fragment with a strong affinity for TDP-43 aggregates and a mechanism that includes competition with RNA sequestration, suggesting a promising therapeutic strategy for TDP-43 proteinopathies such as ALS and FTD.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina , Fenótipo , Animais , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos , Humanos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Drosophila , Camundongos Transgênicos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Masculino
7.
Cureus ; 16(4): e59226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38807846

RESUMO

Bullous pemphigoid is a subepidermal blistering disease that rarely involves the mucous membranes and possesses circulating antibodies against BP antigen II (BP180) and BP antigen I (BP230). Rheumatoid arthritis (RA) is a progressive inflammatory autoimmune disease that is characterized by joint inflammation and systemic involvement. The co-occurrence of RA, which is likewise linked to autoimmunity, with bullous pemphigoid may not be merely coincidental. A 55-year-old female, a known case of RA for 25 years, presented to us with multiple pruritic vesiculobullous lesions. After a thorough clinical and laboratory assessment, she was diagnosed with bullous pemphigoid. This emphasizes the significance of the simultaneous occurrence of autoimmune disorders and the need for vigilant and timely identification.

8.
Cell Death Discov ; 10(1): 225, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724504

RESUMO

Non-melanoma skin cancer (NMSC), encompassing basal and squamous cell carcinoma, is the most prevalent cancer in the United States. While surgical removal remains the conventional therapy with a 95% 5-year cure rate, there is a growing interest in exploring alternative treatment strategies. In this study, we investigated the role of Bortezomib (BTZ), a proteasome inhibitor, in NMSC. Using two NMSC cell lines (A431 and A388), we examined the effects of BTZ treatment. Our results demonstrated that 48 h of BTZ treatment led to downregulating Skp2 expression in both A431 and A388 cells while upregulating p53 expression, specifically in A388 cells. These alterations resulted in impaired cellular growth and caspase-dependent cell death. Silencing Skp2 in A388 cells with siRNA confirmed the upregulation of p53 as a direct target. Furthermore, BTZ treatment increased the Bax to Bcl-2 ratio, promoting mitochondrial permeability and the subsequent release of cytochrome C, thereby activating caspases. We also found that BTZ exerted its antitumor effects by generating reactive oxygen species (ROS), as blocking ROS production significantly reduced BTZ-induced apoptotic cell death. Interestingly, BTZ treatment induced autophagy, which is evident from the increased expression of microtubule-associated proteins nucleoporin p62 and LC-3A/B. In addition to cell lines, we assessed the impact of BTZ in an in vivo setting using Caenorhabditis elegans (C. elegans). Our findings demonstrated that BTZ induced germline apoptosis in worms even at low concentrations. Notably, this increased apoptosis was mediated through the activity of CEP-1, the worm's counterpart to mammalian p53. In summary, our study elucidated the molecular mechanism underlying BTZ-induced apoptosis in NMSC cell lines and C. elegans. By targeting the skp2/p53 axis, inducing mitochondrial permeability, generating ROS, and promoting autophagy, BTZ demonstrates promising anti-cancer activity in NMSC. These findings provide novel insights into potential therapeutic strategies for controlling the unregulated growth of NMSC.

9.
Biomed Pharmacother ; 175: 116663, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688170

RESUMO

Cancer is caused by a complex interaction of factors that interrupt the normal growth and division of cells. At the center of this process is the intricate relationship between DNA damage and the cellular mechanisms responsible for maintaining genomic stability. When DNA damage is not repaired, it can cause genetic mutations that contribute to the initiation and progression of cancer. On the other hand, the DNA damage response system, which involves the phosphorylation of the histone variant H2AX (γH2AX), is crucial in preserving genomic integrity by signaling and facilitating the repair of DNA double-strand breaks. This review provides an explanation of the molecular dynamics of H2AX in the context of DNA damage response. It emphasizes the crucial role of H2AX in recruiting and localizing repair machinery at sites of chromatin damage. The review explains how H2AX phosphorylation, facilitated by the master kinases ATM and ATR, acts as a signal for DNA damage, triggering downstream pathways that govern cell cycle checkpoints, apoptosis, and the cellular fate decision between repair and cell death. The phosphorylation of H2AX is a critical regulatory point, ensuring cell survival by promoting repair or steering cells towards apoptosis in cases of catastrophic genomic damage. Moreover, we explore the therapeutic potential of targeting H2AX in cancer treatment, leveraging its dual function as a biomarker of DNA integrity and a therapeutic target. By delineating the pathways that lead to H2AX phosphorylation and its roles in apoptosis and cell cycle control, we highlight the significance of H2AX as both a prognostic tool and a focal point for therapeutic intervention, offering insights into its utility in enhancing the efficacy of cancer treatments.


Assuntos
Dano ao DNA , Reparo do DNA , Histonas , Neoplasias , Humanos , Histonas/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Fosforilação , Transdução de Sinais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular
10.
Cureus ; 16(3): e56357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38633948

RESUMO

Pemphigus vulgaris is a chronic autoimmune disease of the skin caused by the production of autoantibodies targeting desmogleins 1 and 3 usually presenting in individuals with an average age of onset of approximately 40 years. A 35-year-old obese, diabetic woman presented with fluid-filled lesions over her body for three months along with erosions and painful ulcers in her mouth and genital area for two months. Based on clinical and histopathological studies, the patient was diagnosed as a case of pemphigus vulgaris. She was started on conventional treatment with oral corticosteroids followed by pulse therapy and mycophenolate mofetil. Rituximab infusion was scheduled but could not be administered due to elevated D-dimer values. The patient underwent screening for deep vein thrombosis (DVT) and received subcutaneous enoxaparin and oral rivaroxaban. She developed severe sepsis for which she was treated with systemic antibiotics. She subsequently developed acute renal failure and underwent hemodialysis. The patient's clinical condition further deteriorated, which necessitated therapeutic plasma exchange (TPE). Collagen, colloidal silver, and silicone foam dressings were done to hasten wound healing. Two distinct approaches were employed to eliminate the pseudomembrane on the wounds. One portion was treated with hydrogen peroxide (H2O2), while the other was with hyaluronidase. The hyaluronidase treatment resulted in considerable improvement of the lesions. Intravenous immunoglobulin (IVIG) infusion was scheduled. However, the treatment could not be administered as the patient succumbed to death due to pulmonary thromboembolism (PTE) secondary to DVT.

11.
Cureus ; 16(3): e57233, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38686276

RESUMO

Cyclophosphamide, an alkylating agent, has rarely been observed to cause a bluish discoloration of nails, an occurrence that is typically underreported. We describe the case of a middle-aged male undergoing dexamethasone-cyclophosphamide pulse therapy for pemphigus foliaceus, who exhibited bluish-gray discoloration of the nails. It is crucial to differentiate this presentation from other conditions such as nail apparatus melanoma (NAM), which may manifest in a slightly different manner. We also report the onychoscopic findings observed in this case.

12.
Front Pharmacol ; 15: 1352907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434705

RESUMO

In the current study, Neosetophomone B (NSP-B) was investigated for its anti-cancerous potential using network pharmacology, quantum polarized ligand docking, molecular simulation, and binding free energy calculation. Using SwissTarget prediction, and Superpred, the molecular targets for NSP-B were predicted while cancer-associated genes were obtained from DisGeNet. Among the total predicted proteins, only 25 were reported to overlap with the disease-associated genes. A protein-protein interaction network was constructed by using Cytoscape and STRING databases. MCODE was used to detect the densely connected subnetworks which revealed three sub-clusters. Cytohubba predicted four targets, i.e., fibroblast growth factor , FGF20, FGF22, and FGF23 as hub genes. Molecular docking of NSP-B based on a quantum-polarized docking approach with FGF6, FGF20, FGF22, and FGF23 revealed stronger interactions with the key hotspot residues. Moreover, molecular simulation revealed a stable dynamic behavior, good structural packing, and residues' flexibility of each complex. Hydrogen bonding in each complex was also observed to be above the minimum. In addition, the binding free energy was calculated using the MM/GBSA (Molecular Mechanics/Generalized Born Surface Area) and MM/PBSA (Molecular Mechanics/Poisson-Boltzmann Surface Area) approaches. The total binding free energy calculated using the MM/GBSA approach revealed values of -36.85 kcal/mol for the FGF6-NSP-B complex, -43.87 kcal/mol for the FGF20-NSP-B complex, and -37.42 kcal/mol for the FGF22-NSP-B complex, and -41.91 kcal/mol for the FGF23-NSP-B complex. The total binding free energy calculated using the MM/PBSA approach showed values of -30.05 kcal/mol for the FGF6-NSP-B complex, -39.62 kcal/mol for the FGF20-NSP-B complex, -34.89 kcal/mol for the FGF22-NSP-B complex, and -37.18 kcal/mol for the FGF23-NSP-B complex. These findings underscore the promising potential of NSP-B against FGF6, FGF20, FGF22, and FGF23, which are reported to be essential for cancer signaling. These results significantly bolster the potential of NSP-B as a promising candidate for cancer therapy.

13.
Curr Opin Hematol ; 31(3): 89-95, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335037

RESUMO

PURPOSE OF REVIEW: Cytokine-mediated signaling pathways, including JAK/STAT, PI3K/AKT, and Ras/MAPK pathways, play an important role in the process of erythropoiesis. These pathways are involved in the survival, proliferation, and differentiation function of erythropoiesis. RECENT FINDINGS: The JAK/STAT pathway controls erythroid progenitor differentiation, proliferation, and survival. The PI3K/AKT signaling cascade facilitates erythroid progenitor survival, proliferation, and final differentiation. During erythroid maturation, MAPK, triggered by EPO, suppresses myeloid genes, while PI3K is essential for differentiation. Pro-inflammatory cytokines activate signaling pathways that can alter erythropoiesis like EPOR-triggered signaling, including survival, differentiation, and proliferation. SUMMARY: A comprehensive understanding of signaling networks is crucial for the formulation of treatment approaches for hematologic disorders. Further investigation is required to fully understand the mechanisms and interactions of these signaling pathways in erythropoiesis.


Assuntos
Eritropoese , Transdução de Sinais , Humanos , Transdução de Sinais/fisiologia , Eritropoese/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Janus Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Diferenciação Celular
14.
Pathol Res Pract ; 254: 155174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306863

RESUMO

Breast cancer remains a major global health challenge. Its rising incidence is attributed to factors such as delayed diagnosis, the complexity of its subtypes, and increasing drug resistance, all contributing to less-than-ideal patient outcomes. Central to the progression of breast cancer are epigenetic aberrations, which significantly contribute to drug resistance and the emergence of cancer stem cell traits. These include alterations in DNA methylation, histone modifications, and the expression of non-coding RNAs. Understanding these epigenetic changes is crucial for developing advanced breast cancer management strategies despite their complexity. Investigating these epigenetic modifications offers the potential for novel diagnostic markers, more accurate prognostic indicators, and the identification of reliable predictors of treatment response. This could lead to the development of new targeted therapies. However, this requires sustained, focused research efforts to navigate the challenges of understanding breast cancer carcinogenesis and its epigenetic underpinnings. A deeper understanding of epigenetic mechanisms in breast cancer can revolutionize personalized medicine. This could lead to significant improvements in patient care, including early detection, precise disease stratification, and more effective treatment options.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Metilação de DNA/genética , Epigênese Genética , Carcinogênese/genética , Epigenômica
16.
Discov Med ; 36(180): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273742

RESUMO

The tumor microenvironment (TME) exerts a profound influence on the oncogenesis and progression of various cancers, notably those instigated by the human papillomavirus (HPV) and the Epstein-Barr virus (EBV). The etiology of HPV and EBV-associated malignancies is rooted in intricate interactions that intertwine viral infections, genetic predispositions, and distinct TME dynamics. These interactions foster a milieu that can either support or hinder tumorigenic progression. Gaining in-depth knowledge of the TME's unique features, including its cellular composition, cytokine profiles, and metabolic alterations specific to HPV and EBV-associated cancers, is fundamental to innovating more efficacious therapeutic strategies. This review delineates the intricate roles of HPV and EBV in shaping the TME and expounds upon the unique TME characteristics specific to HPV and EBV-driven cancers. Additionally, we spotlight innovative approaches to remodel the TME, aiming to augment therapeutic efficacy in combatting HPV and EBV-associated neoplasms.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias , Infecções por Papillomavirus , Humanos , Herpesvirus Humano 4 , Infecções por Vírus Epstein-Barr/complicações , Infecções por Papillomavirus/complicações , Papillomavirus Humano , Microambiente Tumoral , Carcinogênese , Papillomaviridae/genética
17.
Exp Cell Res ; 435(1): 113907, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184222

RESUMO

Neosetophomone B (NSP-B) is a unique meroterpenoid fungal secondary metabolite that has previously demonstrated promising anti-cancer properties against various cancer cell lines in vitro. However, its in vivo anti-cancer potential remaines unexplored. To fill this gap in our knowledge, we tested NSP-B's in vivo anti-cancer activity using a zebrafish model, an organism that has gained significant traction in biomedical research due to its genetic similarities with humans and its transparent nature, allowing real-time tumor growth observation. For our experiments, we employed the K562-injected zebrafish xenograft model. Upon treating these zebrafish with NSP-B, we observed a marked reduction in the size and number of tumor xenografts. Delving deeper, our analyses indicated that NSP-B curtailed tumor growth and proliferation of leukemic grafted xenograft within the zebrafish. These results show that NSP-B possesses potent in vivo anti-cancer properties, making it a potential novel therapeutic agent for addressing hematological malignancies.


Assuntos
Neoplasias , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Xenoenxertos , Modelos Animais de Doenças , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cell Biol Int ; 48(2): 190-200, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37885161

RESUMO

Multiple myeloma (MM) is a hematologic malignancy associated with malignant plasma cell proliferation in the bone marrow. Despite the available treatments, drug resistance and adverse side effects pose significant challenges, underscoring the need for alternative therapeutic strategies. Natural products, like the fungal metabolite neosetophomone B (NSP-B), have emerged as potential therapeutic agents due to their bioactive properties. Our study investigated NSP-B's antitumor effects on MM cell lines (U266 and RPMI8226) and the involved molecular mechanisms. NSP-B demonstrated significant growth inhibition and apoptotic induction, triggered by reduced AKT activation and downregulation of the inhibitors of apoptotic proteins and S-phase kinase protein. This was accompanied by an upregulation of p21Kip1 and p27Cip1 and an elevated Bax/BCL2 ratio, culminating in caspase-dependent apoptosis. Interestingly, NSP-B also enhanced the cytotoxicity of bortezomib (BTZ), an existing MM treatment. Overall, our findings demonstrated that NSP-B induces caspase-dependent apoptosis, increases cell damage, and suppresses MM cell proliferation while improving the cytotoxic impact of BTZ. These findings suggest that NSP-B can be used alone or in combination with other medicines to treat MM, highlighting its importance as a promising phytoconstituent in cancer therapy.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Apoptose , Transdução de Sinais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bortezomib/farmacologia , Proliferação de Células
19.
J Dermatol Sci ; 112(2): 83-91, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37865581

RESUMO

BACKGROUND: Cutaneous T cell lymphoma (CTCL) is a T cell-derived non-Hodgkin lymphoma primarily affecting the skin, with treatment posing a significant challenge and low survival rates. OBJECTIVE: In this study, we investigated the anti-cancer potential of Neosetophomone B (NSP-B), a fungal-derived secondary metabolite, on CTCL cell lines H9 and HH. METHODS: Cell viability was measured using Cell counting Kit-8 (CCK8) assays. Apoptosis was measured by annexin V/PI dual staining. Immunoblotting was performed to examine the expression of proteins. Applied Biosystems' high-resolution Human Transcriptome Array 2.0 was used to examine gene expression. RESULTS: NSP-B induced apoptosis in CTCL cells by activating mitochondrial signaling pathways and caspases. We observed downregulated expression of BUB1B, Aurora Kinases A and B, cyclin-dependent kinases (CDKs) 4 and 6, and polo-like kinase 1 (PLK1) in NSP-B treated cells, which was further corroborated by Western blot analysis. Notably, higher expression levels of these genes showed reduced overall and progression-free survival in the CTCL patient cohort. FOXM1 and BUB1B expression exhibited a dose-dependent reduction in NSP-B-treated CTCL cells.FOXM1 silencing decreased cell viability and increased apoptosis via BUB1B downregulation. Moreover, NSP-B suppressed FOXM1-regulated genes, such as Aurora Kinases A and B, CDKs 4 and 6, and PLK1. The combined treatment of Bortezomib and NSP-B showed greater efficacy in reducing CTCL cell viability and promoting apoptosis compared to either treatment alone. CONCLUSION: Our findings suggest that targeting the FOXM1 pathway may provide a promising therapeutic strategy for CTCL management, with NSP-B offering significant potential as a novel treatment option.


Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Humanos , Apoptose , Aurora Quinase A/metabolismo , Aurora Quinase A/uso terapêutico , Linhagem Celular Tumoral , Proteína Forkhead Box M1/efeitos dos fármacos , Proteína Forkhead Box M1/metabolismo , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/patologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Terpenos/farmacologia , Terpenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA