Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630875

RESUMO

Effective low-grade waste heat harvesting and its conversion into electric energy by the means of thermoelectrochemical cells (TECs) are a strong theme in the field of renewable energy investigation. Despite considerable scientific research, TECs have not yet been practically applied due to the high cost of electrode materials and low effectiveness levels. A large hypothetical Seebeck coefficient allow the harvest of the low-grade waste heat and, particularly, to use TECs for collecting human body heat. This paper demonstrates the investigation of estimated hypothetical Seebeck coefficient dependency on KOH electrolyte concentration for TECs with hollow nanostructured Ni/NiO microsphere electrodes. It proposes a thermoelectrochemical cell with power density of 1.72 W·m-2 and describes the chemistry of electrodes and near-electrode space. Also, the paper demonstrates a decrease in charge transfer resistance from 3.5 to 0.52 Ω and a decrease in capacitive behavior with increasing electrolyte concentration due to diffusion effects.

2.
Micromachines (Basel) ; 14(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37421083

RESUMO

Low-temperature (350 °C) vitrification in a KNO3-NaNO3-KHSO4-NH4H2PO4 system, containing various additives to improve the chemical durability of the obtained material, was investigated. It was shown that a glass-forming system with 4.2-8.4 wt.% Al nitrate admixtures could form stable and transparent glasses, whereas the addition of H3BO3 produced a glass-matrix composite containing BPO4 crystalline inclusions. Mg nitrate admixtures inhibited the vitrification process and only allowed obtaining glass-matrix composites with combinations with Al nitrate and boric acid. Using ICP and low-energy EDS point analyses, it was recognized that all the obtained materials contained nitrate ions in their structure. Various combinations of the abovementioned additives favored liquid phase immiscibility and crystallization of BPO4, KMgH(PO3)3, with some unidentified crystalline phases in the melt. The mechanism of the vitrification processes taking place in the investigated systems, as well as the water resistance of the obtained materials, was analyzed. It was shown that the glass-matrix composites based on the (K,Na)NO3-KHSO4-P2O5 glass-forming system, containing Al and Mg nitrates and B2O3 additives, had increased water resistance, in comparison with the parent glass composition, and could be used as controlled-release fertilizers containing the main useful nutrients (K, P, N, Na, S, B, and Mg).

3.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513337

RESUMO

The xerogels based on the aqueous solutions of urea in potassium silicate liquid glass (PSLG) were produced by CO2 bubbling and investigated. The structure and chemical composition of the obtained materials were analyzed. Using the SEM, XRD, IR-FT, DSC, and low energy local EDS analysis, it was recognized that the dried gels (xerogels) contained three forms of urea: oval crystals of regular shape appeared onto the surface of xerogel particles; fibrous crystals were located in the silicate matrix; and molecules/ions were incorporated into the silicate matrix. It was shown that an increase in [(NH2)2CO] in the gel-forming system promoted increased contents in crystalline forms of urea as well as the diameter of the fiber-shaped urea crystals. A rate of the urea release in water from the granulated xerogels containing 5.8, 12.6, and 17.9 wt.% of urea was determined by the photometric method. It was determined that the obtained urea-containing xerogels were characterized with a slow release of urea, which continued up to 120 days, and could be used as controlled release fertilizers containing useful nutrients (N, K).

4.
Data Brief ; 31: 105770, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32548220

RESUMO

Low-grade waste heat harvesting and conversion into electric energy is an important way of renewable energy development and thermo-electrochemical cells are promising devices to solve this problem. In this paper, we report original data on the current density and maximum output power dependents on voltage of the thermos-cells with nickel hollow microspheres electrodes and different electrolyte concentration (from 0.1 to 3.0 mol/l)which exhibit excellent hypothetical Seebeck coefficient and accordingly high open-circuit voltage values at low source temperature. The composition, microstructure and morphology of the hollow nickel microspheres based electrodes are included here. Because of the low cost of nickel based thermo-cells could be commercially feasible for harvesting low-quality thermal energy, in this connection, the raw data of measurements of their properties are given here. The data is related to "High Seebeck coefficient thermo-electrochemical cell using nickel hollow microspheres electrodes", Burmistrov et al., Renewable Energy, 2020 [1].

5.
Methods Appl Fluoresc ; 8(1): 014002, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31622964

RESUMO

Exploring metabolism in human tumors at the cellular level remains a challenge. The reduced form of metabolic cofactor NAD(P)H is one of the major intrinsic fluorescent components in tissues and a valuable indicator of cellular metabolic activity. Fluorescence lifetime imaging (FLIM) enables resolution of both the free and protein-bound fractions of this cofactor, and thus, high sensitivity detection of relative changes in the NAD(P)H-dependent metabolic pathways in real time. However, the clinical use of this technique is still very limited. The applications of metabolic FLIM could be usefully expanded by probing cellular metabolism in tissues ex vivo. For this, however, the development of appropriate tissue preservation protocols is required in order to maintain the optical metabolic characteristics in the ex vivo sample in a state similar to those of the tumor in vivo. Using mouse tumor models of different histological types-colorectal cancer, lung carcinoma and melanoma-we tested eight different methods of tissue handling by comparing NAD(P)H fluorescence decay parameters ex vivo and in vivo as measured with two-photon excited FLIM microscopy. It was found that the samples placed in 10% BSA on ice immediately after excision maintained the same fluorescence lifetimes and free/bound ratios as measured in vivo for at least 3 hours. This protocol was subsequently used for metabolic assessments in fresh postoperative samples from colorectal cancer patients. A high degree of inter- and intra-tumor heterogeneity with a trend to a more oxidative metabolism was detected in T3 colorectal tumors in comparison with normal tumor-distant colon samples. These results suggest that the methodology developed on the basis of FLIM of NAD(P)H in tissues ex vivo show promise for interrogating the metabolic state of patients' tumors.


Assuntos
Fluorescência , NAD/análise , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Imagem Óptica , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fatores de Tempo , Células Tumorais Cultivadas
6.
Clin Colorectal Cancer ; 18(1): e74-e86, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30415989

RESUMO

BACKGROUND: The conventional chemotherapy of colorectal cancer with irinotecan, 5-fluorouracil, and oxaliplatin remains one of the front-line treatments worldwide. However, its efficacy is quite low. Recently studies of the epithelial-mesenchymal transition (EMT) have become the focus of investigations into the cause of chemoresistance in several types of cancer, including colorectal cancer. The data about the role of EMT in chemosensitivity are controversial. MATERIALS AND METHODS: Human colon adenocarcinoma cell lines HT29 and HCT116 and 14 primary short-term cultures established from patient tumors were used. The chemosensitivity to irinotecan, 5-fluorouracil, and oxaliplatin was assessed using the (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Immunocytochemistry, immunohistochemistry, and Western blot test were used to investigate the E-cadherin expression, the loss of which is a major hallmark of EMT. RESULTS: Elevated chemosensitivity of the cell line with EMT phenotype, HCT116, was demonstrated. Increased chemosensitivity was revealed in HT29 cell line upon EMT induction. E-cadherin-positive short-term cultures were more resistant to all the drugs tested, whereas each of E-cadherin-negative cultures showed sensitivity to at least one drug. The statistically significant dependency of cells viability on the E-cadherin expression (P < .04) was demonstrated on the short-term cultures using 2 concentrations of each drug. CONCLUSION: The data obtained may serve as a basis for the analysis of colon cancer chemosensitivity using short-term cultures and the assay of E-cadherin expression.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antígenos CD/genética , Antineoplásicos/farmacologia , Caderinas/genética , Neoplasias do Colo/tratamento farmacológico , Adenocarcinoma/patologia , Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Imuno-Histoquímica , Irinotecano/farmacologia , Oxaliplatina/farmacologia , Células Tumorais Cultivadas
7.
Nano Lett ; 17(2): 805-810, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28005367

RESUMO

The structural organization of compounds in a confined space of nanometer-scale cavities is of fundamental importance for understanding the basic principles for atomic structure design at the nanolevel. Here, we explore size-dependent structure relations between one-dimensional PbTe nanocrystals and carbon nanotube containers in the diameter range of 2.0-1.25 nm using high-resolution transmission electron microscopy and ab initio calculations. Upon decrease of the confining volume, one-dimensional crystals reveal gradual thinning, with the structure being cut from the bulk in either a <110> or a <100> growth direction until a certain limit of ∼1.3 nm. This corresponds to the situation when a stoichiometric (uncharged) crystal does not fit into the cavity dimensions. As a result of the in-tube charge compensation, one-dimensional superstructures with nanometer-scale atomic density modulations are formed by a periodic addition of peripheral extra atoms to the main motif. Structural changes in the crystallographic configuration of the composites entail the redistribution of charge density on single-walled carbon nanotube walls and the possible appearance of the electron density wave. The variation of the potential attains 0.4 eV, corresponding to charge density fluctuations of 0.14 e/atom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA