Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 6): 127246, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37797862

RESUMO

Developing biocompatible, magnetically controlled polymers is a multifunctional solution to many surgical complications. By combining nanoparticle technology with the latest advancements in polymer materials science, we created a multicomponent hybrid system comprised of a robust native spider silk-based matrix; a Mn0.9Zn0.1Fe2O4 nanoparticles coating to provide a controlled thermal trigger for drug release; and liposomes, which act as drug carriers. Fluorescent microscope images show that the dye loaded into the liposomes is released when the system is exposed to an alternating magnetic field due to heating of ferromagnetic nanoparticles, which had a low Curie temperature (40-46°Ð¡). The silk matrix also demonstrated outstanding biocompatibility, creating a favorable environment for human postnatal fibroblast cell adhesion, and paving the way for their directed growth. This paper describes a complex approach to cartilage regeneration by developing a spider silk-based scaffold with anatomical mechanical properties for controlled drug delivery in a multifunctional autologous matrix-induced chondrogenesis.


Assuntos
Lipossomos , Seda , Humanos , Seda/farmacologia , Cartilagem , Sistemas de Liberação de Medicamentos , Portadores de Fármacos , Alicerces Teciduais
2.
Biomacromolecules ; 22(12): 4945-4955, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644050

RESUMO

Linothele fallax (Mello-Leitão) (L. fallax) spider web, a potentially attractive tissue engineering material, was investigated using quantitative peak force measurement atomic force microscopy and scanning electron microscopy with energy dispersive spectroscopy both in its natural state and after treatment with solvents of different protein affinities, namely, water, ethanol, and dimethyl sulfoxide (DMSO). Native L. fallax silk threads are densely covered by globular objects, which constitute their inseparable parts. Depending on the solvent, treating L. fallax modifies its appearance. In the case of water and ethanol, the changes are minor. In contrast, DMSO practically removes the globules and fuses the threads into dense bands. Moreover, the solvent treatment influences the chemistry of the threads' surface, changing their adhesive and, therefore, biocompatibility and cell adhesion properties. On the other hand, the solvent-treated web materials' contact effect on different types of biological matter differs considerably. Protein-rich matter controls humidity better when wrapped in spider silk treated with more hydrophobic solvents. However, carbohydrate plant materials retain more moisture when wrapped in native spider silk. The extracts produced with the solvents were analyzed using nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry techniques, revealing unsaturated fatty acids as representative adsorbed species, which may explain the mild antibacterial effect of the spider silk. The extracted metabolites were similar for the different solvents, meaning that the globules were not "dissolved" but "fused into" the threads themselves, being supposedly rolled-in knots of the protein chain.


Assuntos
Seda , Aranhas , Animais , Microscopia de Força Atômica , Seda/química , Solventes , Aranhas/metabolismo , Propriedades de Superfície
3.
Polymers (Basel) ; 13(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072375

RESUMO

Novel antimicrobial natural polymeric hybrid hydrogels based on hyaluronic acid (HA) and spider silk (Ss) were prepared using the chemical crosslinking method. The effects of the component ratios on the hydrogel characteristics were observed parallel to the primary physicochemical characterization of the hydrogels with scanning electron microscopic imaging, Fourier-transform infrared spectroscopy, and contact angle measurements, which confirmed the successful crosslinking, regular porous structure, exact composition, and hydrophilic properties of hyaluronic acid/spider silk-based hydrogels. Further characterizations of the hydrogels were performed with the swelling degree, enzymatic degradability, viscosity, conductivity, and shrinking ability tests. The hyaluronic acid/spider silk-based hydrogels do not show drastic cytotoxicity over human postnatal fibroblasts (HPF). Hydrogels show extraordinary antimicrobial ability on both gram-negative and gram-positive bacteria. These hydrogels could be an excellent alternative that aids in overcoming antimicrobial drug resistance, which is considered to be one of the major global problems in the biomedical industry. Hyaluronic acid/spider silk-based hydrogels are a promising material for collaborated antimicrobial and anti-inflammatory drug delivery systems for external use. The rheological properties of the hydrogels show shear-thinning properties, which suggest that the hydrogels could be applied in 3D printing, such as in the 3D printing of antimicrobial surgical meshes.

4.
Nanomaterials (Basel) ; 10(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947954

RESUMO

High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.

5.
Front Chem ; 8: 554, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695749

RESUMO

Silkworm silk is mainly known as a luxurious textile. Spider silk is an alternative to silkworm silk fibers and has much more outstanding properties. Silk diversity ensures variation in its application in nature and industry. This review aims to provide a critical summary of up-to-date fabrication methods of spider silk-based organic-inorganic hybrid materials. This paper focuses on the relationship between the molecular structure of spider silk and its mechanical properties. Such knowledge is essential for understanding the innate properties of spider silk as it provides insight into the sophisticated assembly processes of silk proteins into the distinct polymers as a basis for novel products. In this context, we describe the development of spider silk-based hybrids using both natural and bioengineered spider silk proteins blended with inorganic nanoparticles. The following topics are also covered: the diversity of spider silk, its composition and architecture, the differences between silkworm silk and spider silk, and the biosynthesis of natural silk. Referencing biochemical data and processes, this paper outlines the existing challenges and future outcomes.

6.
Chem Commun (Camb) ; 55(56): 8174-8177, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31241066

RESUMO

A major obstacle in developing upconversion aerogels is the incompatibility of the highly-developed porosity and the crystal structure required for converting light to a shorter wavelength. We propose a novel method for creating a sol-gel procedure for synthesizing metal (Zr, Hf, and Ta) oxide upconverison aerogels uniformly doped with Er3+ and Yb3+ by precisely adjusting the calcination conditions.

7.
ACS Appl Mater Interfaces ; 11(26): 22962-22972, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31252494

RESUMO

Spider silk is a natural material possessing unique properties such as biocompatibility, regenerative and antimicrobial activity, and biodegradability. It is broadly considered an attractive matrix for tissue regeneration applications. Optical monitoring and potential control over tissue regrowth are attractive tools for monitoring of this process. In this work, we show upconversion modification of natural spider silk fibers with inorganic nanoparticles. To achieve upconversion, metal oxide nanoparticles were doped with low concentrations of rare-earth elements, producing potentially biocompatible luminescent nanomaterials. The suggested approach to spider silk modification is efficient and easy to perform, opening up sensing and imaging possibilities of biomaterials in a noninvasive and real-time manner in bio-integration approaches.


Assuntos
Materiais Biocompatíveis/farmacologia , Nanopartículas/química , Seda/química , Aranhas/química , Animais , Materiais Biocompatíveis/química , Produtos Biológicos/química , Humanos , Compostos Inorgânicos/química , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA