Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360706

RESUMO

For the treatment of severe COVID-19, supplementation with human plasma-purified α-1 antitrypsin (AAT) to patients is currently considered. AAT inhibits host proteases that facilitate viral entry and possesses broad anti-inflammatory and immunomodulatory activities. Researchers have demonstrated that an interaction between SARS-CoV-2 spike protein (S) and lipopolysaccharides (LPS) enhances pro-inflammatory responses in vitro and in vivo. Hence, we wanted to understand the potential anti-inflammatory activities of plasma-derived and recombinant AAT (recAAT) in a model of human total peripheral blood mononuclear cells (PBMCs) exposed to a combination of CHO expressed trimeric spike protein and LPS, ex vivo. We confirmed that cytokine production was enhanced in PBMCs within six hours when low levels of LPS were combined with purified spike proteins ("spike"). In the presence of 0.5 mg/mL recAAT, however, LPS/spike-induced TNF-α and IL-1ß mRNA expression and protein release were significantly inhibited (by about 46-50%) relative to LPS/spike alone. Although without statistical significance, recAAT also reduced production of IL-6 and IL-8. Notably, under the same experimental conditions, the plasma-derived AAT preparation Respreeza (used in native and oxidized forms) did not show significant effects. Our findings imply that an early pro-inflammatory activation of human PBMCs is better controlled by the recombinant version of AAT than the human plasma-derived AAT used here. Considering the increasing clinical interest in AAT therapy as useful to ameliorate the hyper-inflammation seen during COVID-19 infection, different AAT preparations require careful evaluation.


Assuntos
Anti-Inflamatórios/farmacologia , Leucócitos Mononucleares/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , alfa 1-Antitripsina/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/imunologia , Células CHO , COVID-19/terapia , Células Cultivadas , Cricetulus , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/toxicidade , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , alfa 1-Antitripsina/química , alfa 1-Antitripsina/imunologia
3.
Front Immunol ; 11: 586595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250896

RESUMO

The humoral responses of Ebola virus (EBOV) survivors mainly target the surface glycoprotein GP, and anti-GP neutralizing antibodies have been associated with protection against EBOV infection. In order to elicit protective neutralizing antibodies through vaccination a native-like conformation of the antigen is required. We therefore engineered and expressed in CHO cells several GP variants from EBOV (species Zaire ebolavirus, Mayinga variant), including a soluble GP ΔTM, a mucin-like domain-deleted GP ΔTM-ΔMUC, as well as two GP ΔTM-ΔMUC variants with C-terminal trimerization motifs in order to favor their native trimeric conformation. Inclusion of the trimerization motifs resulted in proteins mimicking GP metastable trimer and showing increased stability. The mucin-like domain appeared not to be critical for the retention of the native conformation of the GP protein, and its removal unmasked several neutralizing epitopes, especially in the trimers. The soluble GP variants inhibited mAbs neutralizing activity in a pseudotype transduction assay, further confirming the proteins' structural integrity. Interestingly, the trimeric GPs, a native-like GP complex, showed stronger affinity for antibodies raised by natural infection in EBOV disease survivors rather than for antibodies raised in volunteers that received the ChAd3-EBOZ vaccine. These results support our hypothesis that neutralizing antibodies are preferentially induced when using a native-like conformation of the GP antigen. The soluble trimeric recombinant GP proteins we developed represent a novel and promising strategy to develop prophylactic vaccines against EBOV and other filoviruses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra Ebola/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Células CHO , Cricetulus , Humanos , Camundongos
4.
Biotechnol Prog ; 31(6): 1571-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26260195

RESUMO

Although the protein yields from transient gene expression (TGE) with Chinese hamster ovary (CHO) cells have recently improved, the amount of plasmid DNA (pDNA) needed for transfection remains relatively high. We describe a strategy to reduce the pDNA amount by transfecting CHO-DG44 cells with 0.06 µg pDNA/10(6) cells (10% of the optimal amount) in the presence of nonspecific (filler) DNA and various polar solvents including dimethylsufoxide, dimethyl formamide, acetonitrile, dimethyl acetamide (DMA), and hexamethyl phosphoramide (HMP). All of the polar solvents with the exception of HMP increased the production of a recombinant antibody in comparison to the untreated control transfection. In the presence of 0.25% DMA, the antibody yield in a 7-day batch culture was 500 mg/L. This was fourfold higher than the yield from the untreated control transfection. Mechanistic studies revealed that the polar solvents did not affect polyethylenimine-mediated pDNA delivery into cells or nuclei. The steady-state transgene mRNA level was elevated in the presence of each of the polar solvents tested, while the transgene mRNA half-life remained the same. These results indicated that the polar solvents enhanced transgene transcription. When screening a panel of recombinant antibodies and Fc-fusion proteins for production in the presence of the polar solvents, the highest increase in yield was observed following DMA addition for 11 of the 12 proteins. These results are expected to enhance the applicability of high-yielding TGE processes with CHO-DG44 cells by decreasing the amount of pDNA required for transfection.


Assuntos
DNA/química , DNA/isolamento & purificação , Plasmídeos/química , Plasmídeos/isolamento & purificação , Transfecção/métodos , Animais , Células CHO , Cricetinae , Cricetulus , Eletroforese em Gel de Poliacrilamida , Interações Hidrofóbicas e Hidrofílicas , Polietilenoimina/química , Solventes/química
5.
Biotechnol Prog ; 31(2): 541-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25683738

RESUMO

Transient gene expression (TGE) in human embryonic kidney (HEK-293) and Chinese hamster ovary (CHO) cells is a well-established technology for the rapid generation of recombinant proteins. Although the maximum TGE yields have reached 1 g/L or more, the amount of plasmid DNA (pDNA) required for transfection remains high. Although greater than 10(3) copies of pDNA are present per transfected cell, protein yields are still lower than those achieved in recombinant cell lines with only one or a few copies of the transgene. This indicates a clear limitation to TGE in terms of the maximum level of recombinant protein production. In this study, we investigated the limitations to high-yielding TGE processes with CHO and HEK-293E cells using a monoclonal antibody as a model protein. For either cell host, both the intracellular and intranuclear pDNA levels increased linearly with the amount of pDNA added to the culture. In contrast, transgene mRNA accumulation reached a plateau as the intranuclear pDNA amount increased, suggesting a limitation in pDNA transcription. A post-transcriptional limitation to TGE yields was revealed by calculating the amount of antibody produced per transgene mRNA (mRNA utilization). For both hosts the transgene mRNA utilization decreased dramatically when transfected pDNA amounts increased beyond the level giving the maximum protein yield. The post-transcriptional limitation did not appear to be due to bottlenecks in antibody assembly or secretion, suggesting that transgene mRNA translation may be limiting. The results show that TGE yields are not limited by pDNA delivery into the nuclei, but in pDNA and transgene mRNA utilization.


Assuntos
Polietilenoimina/química , Proteínas Recombinantes/metabolismo , Transfecção/métodos , Animais , Células CHO , Cricetinae , Cricetulus , DNA/genética , DNA/farmacocinética , Células HEK293 , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Plasmídeos/genética , Plasmídeos/farmacocinética , Proteínas Recombinantes/genética
6.
Protein Expr Purif ; 92(1): 67-76, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24021764

RESUMO

Transient gene expression (TGE) from mammalian cells is an increasingly important tool for the rapid production of recombinant proteins for research applications in biochemistry, structural biology, and biomedicine. Here we review methods for the transfection of human embryo kidney (HEK-293) and Chinese hamster ovary (CHO) cells in suspension culture using the cationic polymer polyethylenimine (PEI) for gene delivery.


Assuntos
Portadores de Fármacos/metabolismo , Vetores Genéticos/administração & dosagem , Polietilenoimina/metabolismo , Transfecção/métodos , Animais , Células CHO , Técnicas de Cultura de Células/instrumentação , Cricetinae , Cricetulus , Desenho de Equipamento , Células HEK293 , Humanos , Proteínas Recombinantes/genética , Vírus/genética
7.
Biotechnol Bioeng ; 109(9): 2271-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22422519

RESUMO

Transient gene expression (TGE) is a rapid method for the production of recombinant proteins in mammalian cells. While the TGE volumetric productivity has improved significantly over the past decade, the amount of plasmid DNA (pDNA) needed for transfection remains very high. Here, we examined the use of non-specific (filler) DNA to partially replace the transgene-bearing plasmid DNA (coding pDNA) in transfections of Chinese hamster ovary (CHO) and human embryo kidney (HEK-293E) cells. When the optimal amount of coding pDNA for either host was reduced by 67% and replaced with filler DNA, the recombinant protein yield decreased by only 25% relative to the yield in control transfections. Filler DNA did not affect the cellular uptake or intracellular stability of coding pDNA, but its presence lead to increases of the percentage of transfected cells and the steady-state level of transgene mRNA compared to control transfections. Studies of the physicochemical properties of DNA-polyethyleneimine (PEI) complexes with or without filler DNA did not reveal any differences in their size or surface charge. The results suggest that filler DNA allows the coding pDNA to be distributed over a greater number of DNA-PEI complexes, leading to a higher percentage of transfected cells. The co-assembly of filler DNA and coding pDNA within complexes may also allow the latter to be more efficiently utilized by the cell's transcription machinery, resulting in a higher level of transgene mRNA.


Assuntos
DNA/genética , Plasmídeos/genética , Proteínas Recombinantes/biossíntese , Transfecção/métodos , Animais , Células CHO , Cricetinae , Cricetulus , DNA/química , DNA/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Polietilenoimina , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética
8.
Biotechnol Lett ; 34(4): 619-26, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22127760

RESUMO

For most cultivated mammalian cells, glutamine is an essential medium component. However, glutamine consumption results in the production of ammonia, a cytotoxic byproduct. Here we investigated the effect of glutamine reduction on recombinant protein production and ammonia accumulation in transiently transfected CHO and HEK-293E cells maintained under conditions of growth arrest. Maximum transient recombinant protein yields were observed in HEK-293E cultures without glutamine and in CHO cultures with 2 mM glutamine. The initial concentration of glutamine correlated with the level of ammonia accumulation in each culture. For both a stable CHO-derived cell line and a polyclonal population of recombinant CHO cells grown under conditions of mild hypothermia, the highest volumetric protein productivity was observed in cultures without glutamine. Here, the level of ammonia accumulation also corresponded to the initial glutamine concentration. Our data demonstrate that reduction of glutamine in the medium is an effective approach to improve protein production in both transiently and stably transfected mammalian cells when applying conditions that reduce or arrest the growth of these cells.


Assuntos
Meios de Cultura/química , Glutamina/metabolismo , Proteínas Recombinantes/biossíntese , Amônia/metabolismo , Amônia/toxicidade , Animais , Células CHO , Técnicas de Cultura de Células/métodos , Cricetinae , Cricetulus , Células HEK293 , Humanos
9.
J Biotechnol ; 153(1-2): 22-6, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21392548

RESUMO

Here we describe a simplified method for transient gene expression (TGE) in suspension-adapted Chinese hamster ovary (CHO) cells using polyethylenimine (PEI) for DNA delivery. Both the transfection and production phases of the bioprocess were performed at a density of 4 × 106 cells/mL at 31 °C. In addition, the amounts of both PEI and plasmid DNA were reduced up to 50% on a per cell basis compared to previously published protocols from this laboratory, resulting in higher cell viability after transfection and higher volumetric recombinant protein yields. In batch cultures of up to 14 days, reproducible recombinant antibody yields up to 300 mg/L were achieved at small scale (5 mL) and up to 250 mg/L at large scale (500 mL). The simplicity and improved yields are expected to increase the utility of CHO cells for the rapid production of recombinant proteins at larger scales by TGE.


Assuntos
Biotecnologia/métodos , Expressão Gênica , Animais , Células CHO , Contagem de Células , Cricetinae , Cricetulus , DNA/genética , Plasmídeos/genética , Polietilenoimina/farmacologia , Proteínas Recombinantes/biossíntese , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA